SECTION 1 INTRODUCTION
General 2
Hardware Requirements/Memory Map 3
SECTION 2 DISPLAY AND KEYBOARD
Display Modes 5
Call Light Interpretation 10
Key Press Sequences 11
LACO-4E Key Press Map 12
SECTION 3 DETECTION AND I/O
General 15
Vehicle Detection 15
Detector Attributes 16
System Detectors 16
Ped Detection 17
Other Inputs 18
Outputs 19
RS232 Outputs 19
SECTION 4 SIGNAL TIMING
Initial Power Up 21
Signal Timing Parameters 22
Phase Timing 23
Configuration 26
Detectors 34
System Detectors 35
Overlaps 36
Preemption 37
Bus Signal Priority 41
Zip Coordination 44
Coordination 45
Coordination Attributes 47
Coordination Tables 49
Programmable Logic 51
SECTION 5 OVERLAPS AND PREEMPTION
Overlaps 53
Preemption 54
Preemption Output 54
Railroad 55
Emergency Vehicle 59
Manual Control 62

LACO-4E USERS MANUAL TABLE OF CONTENTS

SECTION 6 COORDINATION
General 64
LA County Standard Coordination 64
Master Coordinator 65
Local Coordinator 66
Coordination Outputs 69
Coordination Functions 70
Coordination Tables 71
Zip Coordination 73
SECTION 7 COMMUNICATIONS
Peer To Peer 75
WWV/GPS 79
AB3418E (Central Systems Interface) 81
Bus Signal Priority (BSP) 86
SECTION 8 MISCELLANEOUS FEATURES
Bus Signal Priority (BSP) 89
User Data Validation 93
Programmable Logic 95
Mid-Block Ped Crossing 103
Freeway Off-Ramp Release Logic 103
Output File Editing 104
Flashout Program 106
Reinitialization 107
Memory Management 108
Timing Copying 109
APPENDICES
APPENDIX A - TIMING SHEETS 111
APPENDIX B - FEEDBACK FORMS 134
APPENDIX C - GLOSSARY OF TERMS AND ACRONYMS 137
APPENDIX D - TIMING SHEET CONVERSIONS 144
APPENDIX E - I/O MAPPINGS 153
APPENDIX F - RAM MAPS 167
APPENDIX G - CHECKSUM MAPS 190
APPENDIX H - TROUBLESHOOTING GUIDE 203
INDEX220-226 SECTION 1 - INTRODUCTION

SECTION 1 INTRODUCTION

GENERAL
HARDWARE REQUIREMENTS/MEMORY MAP

GENERAL

Highlights of LACO-4E

- Flexible Barrier Structure - This program is not restricted to the "Standard 8 phase quad" ring structure of other Type 170 controller-based programs. It allows the user to customize the ring structure of each intersection in a variety of configurations.
- AB3418E Slave and/or Master - Complies with the original AB3418E Specification for Slave mode. Also supports AB3418E Master mode in that it can transmit Time and Date to AB3418E compliant Slave controllers.
- Multiple communication capabilities - LACO-4E is capable of Central system to controller communications, and controller-to-controller communications.
- Two Coordination Methods - Supports Los Angeles County standard coordination and Zip Coordination, which is an abbreviated form of coordination logic.
- The most user-friendly User Interface available for the Type 170 controller platform - No memory paging schemes. All memory is directly accessible with either three keystrokes (for addresses in $1^{\text {st }}$ two(2) Kbytes of memory) or five(5) keystrokes (for all other memory locations). Any memory location in the entire 170E controller memory map can be viewed in either hexadecimal or decimal format.
- Built in User-Data Validation - LACO-4E filters most critical data continuously to protect the program from invalid data entry.
- Intuitive Programmable Logic feature, including AND, OR, XOR logic, timers and switches, to modify default input and output logic.
- Integrated Intersection Flashout feature - This feature allows maintenance personnel to verify field to controller wiring without swapping out program EPROMS.
- Supports 68 HC 11 processor and Quad UART, with 64 byte receive and transmit FIFO's.
- Central System support using the AB3418E protocol.
- Bus Signal Priority logic - A non-preemptive routine designed to move transit vehicles more efficiently through intersections.

LACO-4E USERS MANUAL
 SECTION 1 - INTRODUCTION

HARDWARE REQUIREMENTS/MEMORY MAP

The 170E controller must be specifically configured for operation with the LACO-4E program. This requires a CPU board with an HC11 processor, custom address decoders and a Quad UART for serial communication. Below is a pictorial representation of the LACO-4E memory map. The custom PAL/GAL's supplied by the manufacturer must conform to this mapping of the EPROM and NVRAM addresses for proper operation of the program.

SECTION 2 DISPLAY AND KEYBOARD
DISPLAY MODES
Base Display Mode
Detailed Ring Display
Table Display Mode
Clock Display Mode
Base Memory Display Mode
Extended Memory Display Mode
CALL LIGHT INTERPRETATION
KEY PRESS SEQUENCES
LACO-4E KEY PRESS MAP

LACO－4E USERS MANUAL SECTION 2 －DISPLAY／KEYBOARD

DISPLAY MODES

Base Display Modes

This is the default display mode for LACO－4E（and all Q5 program derivatives）．

In the figure to the left，the＂A＂represents Ring A while the＂ 25 ＂ directly beneath it represents Phase 2 and Interval 5 （Vehicle Extension），respectively．
The＂b＂represents Ring B and the＂ 63 ＂directly beneath it represents Phase 6 and Interval 3 （Queue Hold），respectively．

In this display mode，Call Light 0 indicates Coordination status，Call Lights 1 through 8 indicate phase call status，and Call Light 9 indicates preemption status．

Detailed Ring Display Mode

This display mode provides timer information for the selected Ring（A or B）．
Ring A

In the figure to the left，the＂ 2 ＂represents Phase 2 while the＂E＂ represents Interval E（Yellow Clearance due to Force Off／Advance）．
In the bottom portion of the display，the＂A＂represents Ring A and the ＂ 01.5 ＂represents the Yellow Clearance time（in seconds）remaining for Phase 2.

In this display mode the Call lights reflect the same information as in the Base Display Mode above．

Ring B

In the figure to the left，the＂ 8 ＂represents Phase 8 while the＂ 7 ＂ represents Interval 7 （Gap Reduction Green）．
In the bottom portion of the display，the＂b＂：represents Ring B，and the＂ 03.6 ＂represents the amount of time in the Ring B Gap Out Timer．

In this display mode the Call lights reflect the same information as in the Base Display mode above．

LACO-4E USERS MANUAL
 SECTION 2 - DISPLAY/KEYBOARD

Table Display Mode

There are three types of tables in LACO-4E; Time of Day, Exception and BSP Override. The table at the lower left shows an Exception table. The " $7 / 8$ " represents Table 7/Event 8 (the two numbers are alternately displayed). The number displayed for the shortest duration (0.3 seconds) is the Table number while the one displayed for the longest duration (0.7 seconds) is the Event number. The " 1 " indicates the Coordination table to be searched and the " 1225 " specifies the month/day (in this case Christmas) on which the Exception table search should occur. Call lights 2 through 6 ON indicate that this event will only be implemented on weekdays (Monday through Friday).

The lower right table is an example of a Time of Day table. The " $0 / 2$ " represents Table 0/Event 2. The two numbers are alternately displayed at the same rate as the Exception Tables. The Coordination Plan/Function is shown in the upper right digit (in this case Plan 8). At the bottom of the display, the "0600" indicates the time of day that the Coordination Plan/Function is scheduled to start. Call lights 1 through 7 are illuminated indicating that Plan 8 should be run every day of the week starting at 6:00 a.m. Call lights 1 through 7 ON indicate that this event will be implemented every day of the week.

As in all display modes, Call Light 0 indicates Coordination status and Call Light 9 indicates Preemption status. Call Lights 1 through 7, however, indicate the days of the week that a Plan/Function is scheduled to run (for Tables 0 through 4), that an Exception Table is to be searched (for Tables 5 through 7) or that the BSP Direction Override phases (for Table 9) are to be implemented.

See section 8 for more information on the BSP Table.

Exception Table

LACO-4E USERS MANUAL
 SECTION 2 - DISPLAY/KEYBOARD

Clock Display Mode

The Clock Display mode is used to display the Time and Date of the 170E controller Real Time Clock. The time/date is shown in the LED Display, while Call Lights 1 through 7 indicate the Day of Week (Sunday through Saturday). The example at the lower left shows the time to be 13:20.26 (or 1:20.26 P.M.). The Day of Week is shown in call lights 1 through 7 . On the right, the date is shown as October 5, 1998, which is a Thursday, so call light 5 would be illuminated (the call light data is only shown once here as it is the same for both the Time and the Date display).

Time

Date
4

5

6

7

8

9

When modifying the time or date displays the first key press will set all display digits to "C" except for the left most Timing/Data digit, which will reflect the key just pressed. Each successive key press will modify the next digit to the right until the rightmost Timing/Data digit is modified. Finally the Phase and Interval digits are updated with the last two key presses. See Appendix A14, Setting The Real Time Clock, for more detailed information.

LACO-4E USERS MANUAL
 SECTION 2 - DISPLAY/KEYBOARD

Base Memory Display Mode

This display mode can only be used to show data in memory locations 000 through 7FF. Base memory holds two types of data, Flag and Decimal. Flag data is displayed in Call Lights 1 through 8 and represents phases, status or control options. Decimal data is shown in the bottom portion of the LED Display and generally is used to display timers. The RAM maps in Appendix F of this manual indicate the data type for each Base memory location. Call Lights " 0 " and " 9 " reflect Coordination status and Preemption status, respectively.

Flag Data Display

○ 4
9

This example shows that memory location 076 (FAZNXT) has been accessed. Since this is Flag type data, its value is shown in the Call Lights. This example shows that phases 2 and 6 are the next phases to be served. The current value of the Local Cycle Timer (in this case " 052 ") is always shown in the LED Display when Flag data is being accessed.

Decimal Data Display

This example shows that memory location 1A5 (RAVEXT) has been accessed. Since this is Decimal type data, its value is shown in the lower portion of the LED Display. This example shows that the Ring A Vehicle Extension Timer has 3.7 seconds remaining. Current Call status is always shown in the Call Lights when Decimal data is being accessed. In this case all of the even numbered phases are calling.

LACO-4E USERS MANUAL
 SECTION 2 - DISPLAY/KEYBOARD

Extended Memory Display Mode

Extended Memory Display mode can show the same data in two different ways, Decimal Display and Flag Display. When first accessing memory in this mode, the Flag Display is shown. Every time the Front Panel Stop Time switch is set to the ON position the LED display toggles between Decimal Display and Flag Display. This feature is particularly useful for the maintenance person. See Appendix H, Troubleshooting Guide for more detailed information on this display mode.

Flag Display

This example shows that location 19E2h has been accessed and the call lights show that its data contains a value of 80 h (in hexadecimal format). The alternating " $1 / 9$ " represents the memory Page (19h) and has the same display rate as in the Table Display mode. The "E2" indicates the memory location's column and row, respectively. The "027" represents the current value of the Local Cycle Timer. In this mode, pressing any numeric key modifies the data immediately.

When the Front Panel Stop Time switch is placed to the ON position, the display format changes to Decimal Display as shown below.

Now the data at location 19E2h is shown (in decimal form) in the Timing/Data digits. It shows "128" because that is the decimal equivalent of 80 h . Also, in this display mode, the call lights reflect current Coordination status (0), phase call status (1 through 8) and preempt status (9). In this case, all phases have calls. To modify data in this display mode press any numeric key followed by "E" to save.

LACO-4E USERS MANUAL
 SECTION 2 - DISPLAY/KEYBOARD

CALL LIGHT INTERPRETATION

The Call/Active indicators (call lights) on the 170E controller front panel provide a wide range of information about an intersection's timing and operation. There are ten call lights, numbered " 0 " through " 9 ".

Call Light 0

Call light " 0 " always reflects the Local Coordinator status regardless of the display mode. It will be OFF when Local Manual (location 401) is set to " 014 ". Otherwise, it will be ON except when the coordination Sync Pulse is TRUE. The exception to this is when the Local Coordinator is running in Offset Timing mode. In this case, call light " 0 " comes ON when the Offset Timing trigger is sensed and stays on for the duration of the cycle. At the end of the cycle, call light "0" goes OFF until the next Offset Timing trigger is sensed.

Call Lights 1-8

Call lights " 1 " through " 8 " have different interpretations, depending on which display mode the Function display is in. In both the Base display mode and Detailed Ring display mode, call lights "1" through " 8 " represent the call status of phases 1 through 8 . A steady ON indication means there is a vehicle call for the corresponding phase. A ped call is indicated when the call light flashes at a rapid rate (5 Hz). If the call light is flashing at a slow rate (1 Hz), it means that the corresponding phase is flagged for Protected/Permissive Left Turn operation (at location 1FB), that phase is calling for service and a more lagging phase in that quadrant is or has already served since crossing the barrier. If this same phase is also configured as a ped phase, and a ped call is present for this phase, then the both flash rates are combined. That is, the call light will alternately be OFF for .5 seconds and then flash at a 5 Hz rate for .5 seconds.

The preceding description is also true when the Function display is in Base Memory display mode and accessing decimal data. If flag data is being accessed, the call lights represent the actual data (in hexadecimal format) at that location. This can either be "phase/overlap" data or "flag" data.

Call Light 9

Call light "9" always reflects the preemptor status regardless of the display mode.

- It will be ON whenever a Railroad preempt sequence is active.
- It will also be ON during the Active, Hold and Delay intervals of an EV preempt.
- It will be OFF at all other times.

LACO-4E USERS MANUAL
 SECTION 2 - DISPLAY/KEYBOARD

KEY PRESS SEQUENCES

The following text refers to the LACO-4E Key Press Map at the end of this section. This map provides the user with a graphical presentation of all possible key presses subsequent key press options. Starting at the top of the map, the LED Display is in Base Display mode.

First Key Press

Keys $\mathbf{0}$ through 7 - Base Memory Display mode.
This is a 3 key sequence to access any byte of memory from 0000 to 07FF. The first key press selects a memory location Page. The second key press selects a memory location Column and the third key press selects a memory location Row. At this point, displayed data can be modified (using numeric keys) or direction keys (A, C, D, or F) can be pressed to access adjacent memory locations. Pressing "B" or "F" will return to Base Display Mode.
Key 8 - Extended Memory Display mode
This is a 5 -key sequence to access any byte in the entire memory range of the 170E controller (0000 through FFFF). The first key press, " 8 ", sets Extended Memory Display mode. The second and third key presses select a memory location Page, and any numbers between 00 h and FFh are valid. The fourth and fifth key presses select a memory location Column and Row, respectively. When a memory location is first accessed, its data is displayed in Call Lights 1 through 8 (in hexadecimal format). The LED display shows the address of the memory location and the Local Cycle Timer. Toggling the Front Panel Stop Time switch changes the display format. Now the data is displayed in the LED display (in decimal format) and the Call Lights reflect Call status. Each time the Front Panel Stop Time switch is toggled on and off, the display mode also toggles.
Key 9 - Table Display mode.
This special key stroke sequence is used to populate the Coordination and BSP Tables. The first key press, " 9 ", sets Table Display mode. The next key press sets the display to show Event 0 of the desired table ($0-7$ or 9). The next four key presses set the time (hh:mm), date ($\mathrm{mm} / \mathrm{dd}$) or exception pattern $(\mathrm{mm} / \mathrm{nn})$. The next key press sets the plan/function, table or direction override. The next key press, "E", saves the data, and the final key press(es) set the Day(s) of Week.
Key A - Detailed Ring Display mode (Ring A) or Clock Display mode
Press any key except "C" or "D" to return to Base Display mode. Pressing the "C" key puts the 170E controller into Clock Display mode showing the Time Display, while pressing "D" puts the 170E controller into Clock Display mode showing the Date Display. These key press sequences have been retained for those users familiar with LACO-1R and LACO-3. See "Key C" below for key press details on the Clock Display mode.
Key B - Detailed Ring Display mode (Ring B)
Press any key to return to Base Display mode.
Key C - Clock Display mode.
The first key press, "C", sets the Clock Display mode showing the Time Display. Press "A" or "D" to toggle back and forth between the Time Display and the Date Display. Press " B " or " F " to return to Base Display Mode. Press " C " to modify the Seconds component directly in the Time Display. If the 170E controller is configured with W W V/GPS, pressing the " E " key from the Time Display will force a repoll from W W V . If any numeric key ($0-9$) is

LACO-4E USERS MANUAL
 SECTION 2 - DISPLAY/KEYBOARD

pressed, Data Modification mode is initiated. This allows the user to modify Seconds, minutes, Hours, and Day of Week in the Time Display and Year, Month, Day in Month and Day of Week in the Date Display. The Day of Week need only be set in either the Time or Date Display. It will automatically update the other Display. See Appendix A16, Setting The Real Time Clock.

Keys D, E, and F - Perform no action as first key press. The LED Display remains in Base Display mode

LACO-4E Key Press Map
SECTION 3 DETECTION and I/O
GENERAL
VEHICLE DETECTION
DETECTOR ATTRIBUTES
SYSTEM DETECTORS
PED DETECTION
OTHER INPUTS
OUTPUTS
RS232 OUTPUTS

LACO-4E USERS MANUAL
 SECTION 3 - DETECTION and I/O

GENERAL

LACO-4E supports forty-four physical inputs and fifty-six physical outputs via the C1 connector. These inputs and outputs have default mappings assigned to them based on the Caltrans 170E controller specification. LACO-4E offers exceptional I/O customization and almost any input or output can have its default function modified or reassigned. All references to input and output mapping in this section are in relation to the Caltrans 332 Input and Output Files. For a complete listing of this and other cabinet type default I/O, see Appendix E.

VEHICLE DETECTION

Up to twenty-eight-vehicle detector inputs are supported. Any single phase or multiple phases can be assigned to a detector. To simplify the programming effort, LACO-4E defaults phase assignments to the L. A. County default configuration. If a particular detector receives an actuation, and no phase is explicitly set for that detector, then the default phase for that detector will be called unless the detector is flagged as "System Detector". The default phase assignments for each detector are indicated on the Detector timing sheet as a shaded block under the phase. Along with a phase assignment, each detector can have its basic operation modified by assigning any of eight detector attributes. Basic detector operation is such that each detector (on actuation) will call or extend its assigned phase(s) and will accumulate counts. Note that detector counts (for purposes of Added Initial Green computation) are disabled for detectors with multiple phase assignments.

Detector Extension (Carryover) timers are provided for each detector along with Detector Delay timers. The Extension timer and Delay timer can operate up to 25.5 seconds and 255 seconds, respectively. The default setting for both timers is zero seconds. A detector's Delay timer will count down while the detector is actuated and its assigned phase is Red. If the actuation is dropped, the Delay timer will be reset to its initial value. The detector's Extension timer is only active during the assigned phase's Green interval. If the input goes False (vehicle call is dropped), the detector's actuation will be extended for the duration of the Extension timer.

Each detector's delay timer address is offset by " 60 h " from the delay time location. For example, to set the delay time for detector I6U (in a 332 cabinet), go to 214 h and enter the desired delay time. To view the delay timer for detector I6U, go to location $274 \mathrm{~h}(214 \mathrm{~h}+60 \mathrm{~h}=274 \mathrm{~h})$, or simply press the "F" key six times from location 214. The same is true for a detector's extension timer and actuation counters. Below is a portion of the Detector Page RAM map that illustrates this.

LACO-4E USERS MANUAL
 SECTION 3 - DETECTION and I/O

DETECTOR ATTRIBUTES

Each detector can be assigned either the "System Detector" attribute or any combination of the remaining seven attributes. If a detector is flagged as "System Detector", that detector ignores the other seven attributes.
System Detector - Disables "phase-calling" for the flagged detector.
Red \& Yellow Lock - This attribute causes an actuation to be locked if it occurs during the Red or Yellow interval of the phases selected for the detector. The locked actuation will drop when any of the selected phases begins service.
Yellow Disconnect - Causes an actuation to be ignored during the selected phase's Yellow interval. Results in a "Red Lock only" operation when used in conjunction with the Red \& Yellow Lock attribute above.
Red Calling Only - This attribute causes an actuation to be recognized only during the flagged phase's Red interval.

Queue Clearing - A Queue Clearing detector calls but will not extend a phase. This attribute provides stop bar "extension" without the restriction of a gap out timer. That is, once the detector's assigned phase goes Green, the call to the phase is dropped and a Queue Hold is applied to that phase. The phase will stay Green (showing interval " 3 " in the front panel display) as long as the actuation is present and the phase's Queue Limit timer has not expired. If either of these two conditions is not satisfied, the detector is disconnected until the next phase red.

Non-Counting - This attribute inhibits the detector's count accumulator so that the Added Initial Green function for the detector's assigned phase will not be operational.
Special Delay Option 1 - Selection of this attribute provides modified detector delay operation. This option causes the detector's Delay timer to be ignored while the selected phases are timing.

Special Delay Option 2 - Same as Special Delay Option 1.

SYSTEM DETECTORS

LACO-4E supports System Detector functionality for all 28 detector inputs. System Detector data, Volume, Occupancy and Detector Diagnostics, is accumulated each collection period and stored in the AB3418E data buffers. This data is retrieved from the 170E controller by sending the AB3418E GetSystemDetectorData message from Central.

Configuration

System Detector configuration is minimal. There are only four user-set parameters, the data collection period and three detector diagnostics thresholds. These parameters are viewed in the Front Panel LED display.

Location	Parameter	Description
21F	Detector Stuck ON Threshold (default value $=0$ minutes)	The length of time (in minutes) that a detector calls continuously before causing a Detector Stuck ON error. A value of "000" inhibits testing for Stuck ON error
$22 F$	Detector Stuck OFF Threshold (default value $=0$ minutes)	The length of time (in minutes) that a detector fails to call before causing a Detector Stuck OFF error. A value of "000" inhibits testing for Stuck OFF error
$23 F$	Detector Chatter Threshold (default value $=0$ actuations)	The number of actuations per Collection Period that will cause a Detector Chatter error. A value of "000" inhibits testing for Chatter error
$24 F$	Collection Period Time (default value $=60$)	The duration (in seconds) of the Collection Period

LACO-4E USERS MANUAL
 SECTION 3 - DETECTION and I/O

Operation

System detection operates automatically with no intervention from the user. Each detector input is monitored, ten times per second, while the Period timer is active for actuations, time ON and time OFF. When the Period timer counts down to "0", all detectors are compared to the three error thresholds. If a detector equals or exceeds an error threshold, the corresponding error code is set in that detector's Occupancy/Status byte. The AB3418E error codes implemented in LACO-4E are:

- 210 (0D2h) - Detector Stuck ON
- 211 (0D3h) - Detector Stuck OFF
- 215 (0D7h) - Detector Chattering

If no error is detected (or error checking is disabled for that detector) the detector's occupancy is computed and displayed in its Occupancy/Status byte. Occupancy is displayed in $.5 \%$ increments from 000 through 200 (100\%). Each detector's Volume is transferred to its AB3418E Volume buffer regardless of any error condition.

The AB3418E buffer data remains unchanged until either...
a) the end of a Collection period, at which time the old data is replaced with the most current data.

Or

b) the AB3418E GetSystemDetectorData is received and the response is sent by the controller, after which all of the AB3418E data buffers are cleared.
See section 7 for detailed information on AB3418E communications

PED DETECTION

Up to six ped pushbuttons (PPB) inputs are supported; the four standard PPB's and two optional PPB's (called PedA and PedB) that can be remapped to override the Manual Control inputs. An actuation on any of these inputs will cause a locked ped call to be placed to their assigned phases. When the assigned phase goes green, ped service will start with it and the ped call will be dropped. The ped inputs are default mapped as follows:

- PedA - C1-80
- PedB - C1-53
- Ped2-C1-67
- Ped4 - C1-69
- Ped6-C1-68
- Ped8 - C1-70

Note: If either the PedA or the PedB input is configured, Manual Control logic is disabled.

LACO-4E USERS MANUAL
 SECTION 3 - DETECTION and I/O

OTHER INPUTS

LACO-4E supports up to six preempt inputs, two(2) Railroad (RR) and four(4) Emergency Vehicle (EV). The RR A input initiates flashing operation while the RR B input initiates limited service operation. The RR inputs use "Ground TRUE" logic. That is, presence of 115 vac at the isolator input sets the 170E controller input FALSE and is treated as "Preempt OFF", while absence of 115 vac at the isolator input sets the 170E controller input TRUE and is treated as "Preempt ON". Consequently, the RR inputs require an AC Isolator with inverted outputs for the input to be sensed properly. A RR input must be on for a minimum of $1 / 2$ second before it is recognized. RR A input is mapped to C1-51 while RR B input is mapped to C1-52.

The four EV (A through D) inputs use "Ground FALSE" logic. LACO-4E does not currently support the Opticom discriminator (oscillating) inputs, therefore the input must be steady ON for the preempt logic to operate properly. The four EV inputs are default mapped as follows:

- EV A - C1-71
- EVB-C1-72
- EV C-C1-73
- EVD-C1-74

Manual Control inputs include Enable and Advance. These two inputs are default mapped to C1-80 (Advance) and C1-53 (Enable). These inputs are routed to the Police Panel Manual Control jack. When a plug is inserted in this jack, the Manual Control Enable input is set ON and the Manual Control Advance input is controlled by the toggling device attached to the plug. As mentioned above, if either PedA or PedB phases are selected, these inputs will act as the PPB inputs and Manual Control logic will be disabled.

The Flash Sense input is usually not user controlled. It is wired directly to the Conflict Monitor Unit (CMU) and is set ON whenever the CMU latches an error condition. This input is default mapped to C1-81.

The External Stop Time input, like the Flash Sense input, is wired directly to the CMU and is set ON at the same time that the CMU sets the Flash Sense input ON. It also can be turned ON by setting either the cabinet FLASH/AUTO switch or the Police Panel FLASH/NORMAL switch to FLASH. This does not affect the Flash Sense input. This input is default mapped to C1-82.

The Cabinet Door Open input is mapped to C1-54 and the Police Panel Door Open input is mapped to C1-75. These inputs are monitored for reporting to Central via AB3418E status messages.

LACO-4E USERS MANUAL
 SECTION 3 - DETECTION and I/O

OUTPUTS

LACO-4E is capable of driving twelve(12) 3 -color outputs (signal heads), with any combination of eight phases and four 3 -color overlaps. Additionally, up to six 2-color outputs can be accommodated with any combination of six peds and six(6) 2-color overlaps (all six of the overlaps can be used to drive 2 -section signal heads). By default, phases 1 through 8 and Ped2, Ped4, Ped6, Ped8, overlap A and overlap B outputs are directed to the cabinet's Output File. The four(4) 3-color overlaps (C, D, E and F) are directed to the Auxiliary Output File (Aux File). Since the Aux File is typically not standard equipment, the 3-color overlaps may be redirected to any unused load switch in the Output File using the overlap Load Switch Assignment parameters.

The 170E controller also outputs a WatchDog Timer (WDT) signal to let the CMU know that the controller is still "alive". This is a 5 Hz signal that can be observed in an LED on the 170E controller Front Panel (usually labeled WDT on newer controllers). When the WDT signal is interrupted for more than . 9 seconds, the CMU latches an error and puts the cabinet into flash. Note that not all Type 170 controllers have a WDT LED on their Front Panel.

The Detector Reset output is normally connected to each of the Input File slots. LACO-4E does not currently directly drive this output. However, it can be used in conjunction with the Programmable Logic feature to perform a user-defined operation.

The Preemption indicator drives the AUX3 Yellow output. This is user settable at location 3C0 and can be set to come on when any preemption or Manual Control is active.

Finally, the Time of Day Special Function (TODSPF) output can be turned on or off by the coordination TOD tables. This logic drives the AUX3 Green output and is useful for controlling signs/flashers at schools.

RS232 OUTPUTS

LACO-4E offers a broad range of serial outputs that can be used to send a variety of information to any controller on the same twisted-pair interconnect. Coordination data, Time/Date, AB3418E messaging and phase Green or Yellow can be sent with very simple configuration. The receiving controllers must be set to the same communications protocol that LACO-4E uses to transmit the data. Details about the serial outputs are provided in section 7, Communications.
SECTION 4 SIGNAL TIMING
INITIAL POWER UP
SIGNAL TIMING PARAMETERS
PHASE TIMING
CONFIGURATION
DETECTORS
SYSTEM DETECTORS
OVERLAPS
PREEMPTION
BUS SIGNAL PRIORITY
ZIP COORDINATION
COORDINATION
COORDINATION ATTRIBUTES
COORDINATION TABLES
PROGRAMMABLE LOGIC

LACO-4E USERS MANUAL
 SECTION 4 - SIGNAL TIMING

INITIAL POWER UP

When the 170E controller is started for the first time with a LACO-4E EPROM installed (and no LACO-4E timing saved on the Prom Module), signal timing is initialized as follows.

Location(s)	Function	Value
1E0	Main Street Phases	$1,2,5,6$
1E1	Side Street Phases	$3,4,7,8$
10F	Red Revert Time	02.0 seconds
11E	Phase 1 Yellow Clearance	05.0 seconds
12E	Phase 2 Yellow Clearance	05.0 seconds
13E	Phase 3 Yellow Clearance	05.0 seconds
14E	Phase 4 Yellow Clearance	05.0 seconds
15E	Phase 5 Yellow Clearance	05.0 seconds
16E	Phase 6 Yellow Clearance	05.0 seconds
17E	Phase 7 Yellow Clearance	05.0 seconds
18E	Phase 8 Yellow Clearance	05.0 seconds
190	AB3418E Comm Address	000
191 to 194	Ports 1-4 Comm Mode	000
1C0 to 1C4	Ports 1-4 Baud Rate	1200 bps (Call light 8 ON)
1C5 to 1C8	Ports 1-4 Parity	0
400	System Manual	014 (Free)
401	Local Manual	014 (Free)
409	Maximum Cycle Length	255 seconds
104	Program Number	005
All other Timing Sheet locations are set to zero time/no flags.		

These timings provide the controller with the minimum data necessary to start operation for the first time. The controller will start up with phases 4 and 8 timing Red Clearance (interval "F") as shown on the front panel display. After the 5 seconds of Red Clearance, the intersection will rest in red.

Basic 8 Phase fixed time operation can be quickly implemented by setting the following parameters:

- Permitted phases - Select all phases
- Minimum Vehicle Recall phases - Select all phases
- Ped Recall phases - Select all enabled peds
- Phase Minimum Green times - As desired
- Phase Yellow and/or Red Clearance times - As desired
- Ped Walk and Flashing Don't Walk times - As desired

LACO-4E USERS MANUAL
 SECTION 4 - SIGNAL TIMING

SIGNAL TIMING PARAMETERS

The remainder of this section addresses the LACO-4E Timing Sheet entries starting at Page 1 (Phase Timing) and continuing through Page 14 (Programmable Logic). A minimum of two pages (Phase Timing and Configuration) is required to implement basic intersection timing. An intersection that takes advantage of all of the program's features could require up to 13 pages. The timing sheets are designed so that a major feature or function is implemented on one sheet. For instance, System Detectors, Preemption, Overlaps, and Programmable Logic are all on separate pages and if any of those particular functions is not required, then the respective timing sheet can be omitted. The header of each Timing Sheet has the label "Page \qquad of " so that any combination of Timing Sheets can be assembled as a package and still be numbered sequentially. The table below lists each of the timing sheets and their applicable data categories.

Timing Sheet	Data Categories
Phase Timing	Phase intervals, Phase diagram, Miscellaneous timers
Configuration	Phase Function flags, Street Configuration flags, Miscellaneous flags, Communications Options, Manual Control Configuration
Detectors	Extension/Delay time, Phase flags, Attribute flags
System Detectors	Collection Period and Error Thresholds
Overlaps	Parent phase assignment, Clearance and Delay time, Load Switch assignment
Preemption	Railroad configuration, EV configuration, Preempt output configuration
Bus Signal Priority	BSP Table and configuration
Zip Coordination	Zip Coordination enable and configuration
Coordination 1	Plans 1 thru 9 Offsets, Plans 1 thru 3 Interval and Function flags
Coordination 2	Plans 4 thru 6 Interval and Function flags
Coordination 3	Plans 7 thru 9 Interval and Function flags
Coordination Attributes	Coordination Phase flags
Coordination Tables	Time of Day, Holiday and Exception tables
Programmable Logic	Logic Gates, Latches, Relays and Timers

Following the fourteen timing sheets are five information sheets that can be included in a timing sheet package to assist maintenance personnel. They include the Programmable Logic Worksheet, Real Time Clock instructions/information, and three Maintenance Information sheets, which provide information on memory locations that are useful for equipment diagnostics or troubleshooting an intersection. In the following pages, each section of the LACO-4E timing sheets, beginning with sheet 1 (Phase Timing) is replicated with a description of the parameters therein. The majority of LACO-4E Phase Timing is the same as in previous LACO programs and users familiar with those programs will easily adapt to this version. Appendix D offers guidance in converting LACO-1R and LACO-3 program timing sheets to LACO-4E format.

LACO-4E USERS MANUAL
 SECTION 4 - SIGNAL TIMING

PHASE TIMING

The first timing sheet, Phase Timing, includes all of the per-phase intervals, miscellaneous timers and the Phase Diagram block, which provides space to include information on the geometry of the intersection. The fields for Minimum Green and Yellow Clearance show the default values for all Permitted phases (set at location 1F0), if no data is entered for those parameters. The default values shown for pedestrian intervals only apply if that phase is flagged as a pedestrian movement (at locations 1E2 through 1E7). The bold, bracketed numbers following each interval description indicate the range of values that the interval will accept. Numbers with decimal points time in 0.1 -second increments. Whole numbered intervals time in one second increments.

Timing Intervals

The Walk, Flashing Don't Walk, and Minimum Green intervals comprise a quantity referred to as "Minimums." Minimums are those portions of the green interval that are guaranteed to time, except when overridden by Preemption. As shown below, all green timers count down concurrently from start of green, and continue until zero (with exceptions noted below).
START OF GREEN

MAXIMUM GREEN (1 OR 2)	Resets to initial value when opposing call drops	
TIME BEFORE REDUCTION	TIME TO REDUCE	These must time sequentially and with a conflicting call present

NOTE: The Walk, Flashing Don't Walk and Minimum Green timers cannot be overridden by a Force Off but can be overridden by Railroad preempt Advance. A Force Off or Railroad preempt Advance will override all other green timers.

Keystrokes: $\mathbf{1 + \text { Phase + Interval }} \boldsymbol{\| c \| c \| c \| c \| c \| c \| c \|} \mid$									
Interval		$\mathbf{1}$	$\mathbf{2}$	$\mathbf{3}$	$\mathbf{4}$	$\mathbf{5}$	$\mathbf{6}$	$\mathbf{7}$	$\mathbf{8}$
Walk	$\mathbf{0}$	0	1	0	1	0	1	0	1
Flashing Don't Walk	$\mathbf{1}$	0	1	0	1	0	1	0	1
Minimum Green	$\mathbf{2}$	10	10	10	10	10	10	10	10
Queue Maximum	$\mathbf{3}$	0	0	0	0	0	0	0	0
Added Green per Actuation	$\mathbf{4}$	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
Vehicle Extension	$\mathbf{5}$	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
Time Before Reduction	$\mathbf{6}$	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
Minimum Gap	$\mathbf{7}$	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
Max Green 1 (Free)	$\mathbf{8}$	0	0	0	0	0	0	0	0
Max Green 2 (Coordination)	$\mathbf{9}$	0	0	0	0	0	0	0	0
Max Added Green	\mathbf{A}	0	0	0	0	0	0	0	0
Unused	\mathbf{B}								
Unused	\mathbf{C}								
Time to Reduce	\mathbf{D}	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
Yellow Clearance	\mathbf{E}	5.0	5.0	5.0	5.0	5.0	5.0	5.0	5.0
Red Clearance	\mathbf{F}	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0

Walk - The amount of time that the international walk symbol or "WALK" message is displayed on the pedestrian signal head. The minimum Walk time that can be entered into the 170E controller is 1 second. The Walk interval must time out completely unless an EV or Railroad Preempt occurs. In which case, the Walk timer is forced to zero and the Walk interval ends immediately. [0 to 255]

Flashing Don't Walk - The amount of time that the flashing international Don't Walk symbol or "DON'T WALK" message is displayed on the Pedestrian Head. The minimum Flashing Don't Walk time that can be entered into the 170E controller is 1 second. As with the Walk time, the Flashing Don't Walk interval must time out completely unless an EV or Railroad Preempt occurs. In the case of a Railroad Preempt, the Flashing Don't Walk timer is forced to zero and the flashing DON'T WALK indication goes to a steady DON'T WALK immediately. With an EV Preempt, LACO-4E allows two options. The default operation is to allow the Flashing Don't Walk interval to time out completely. By setting the appropriate flag on the Preemption Timing Sheet, the second option results in the immediate termination of the Flashing Don't Walk Interval. [0 to 255]
Minimum Green - The minimum length of time that a Vehicle indication will stay green (in the absence of a Preemption condition). [0 to 255]
Queue Maximum - The maximum length of time that a queue detector will hold a phase green. Queue Maximum times concurrently with Minimum Green. [0 to 255]
Added Green per Actuation - The amount of time that Added Green is increased for each calling detector actuation. Added Green times concurrently with Minimum Green. [0.0 to 25.5]
Vehicle Extension - The length of time that a phase will be held green (extended) in the absence of a detector actuation for that phase. Vehicle Extension begins timing when there is no actuation for the current phase and resets to its initial value when a call is reasserted. [0.0 to 25.5]
Time Before Reduction (TBR) - The amount of time that a phase waits before it begins timing Gap Reduction. TBR starts timing the moment when a conflicting call is present during the green. If no conflicting call is present the TBR timer resets to its initial value. [$\mathbf{0 . 0}$ to 25.5]
Minimum Gap - The lower limit that a phase's Gap Out timer will be reached during Gap Reduction. Vehicle Extension will reduce down to this value only after the Time Before Reduction timer has expired. [0.0 to 25.5]

LACO-4E USERS MANUAL
 SECTION 4 - SIGNAL TIMING

Max Green 1 and 2 - The maximum amount of green time that a phase will time. Max Green 1 is used during Free operation and Max Green 2 is used during coordinated operation. The Max Green timer begins timing at the start of the green interval. [0 to 255]

Max Added Green - The maximum amount of Added Green time that a phase can time. Limits the amount of Added Green resulting from excessive detector actuations. [0 to 255]
Time to Reduce (TTR) - The length of time to reduce the Gap Out timer (reduce Vehicle Extension time to Minimum Gap time). [0.0 to 25.5]

Yellow Clearance - The length of time that Yellow is displayed. Unless a phase is flagged for Yellow Ranging (at location 1DE), values less than 3.0 seconds will be changed to 3.0 seconds, and values greater than 5.0 seconds will be changed to 5.0 seconds. [3.0 to 5.0]

Red Clearance - The amount of time after the Yellow Clearance interval that a phase will display red. While this timer is active, no other phase in the same ring can start. [0.0 to 25.5]

Phase Diagram

This is where the intersection phasing is to be indicated. The directions of True North and Phase North, and the movements associated with each phase should be indicated here. Overlap movements should also be identified in this diagram along with Restricted and/or Exclusive phases. Highlight the barrierphase boundaries to emphasize the quad structure of the intersection. The example above shows Main Street phases (as set in location 1E0) to be 1, 2, 3, 5, and 6 with the barrier phases being 3 and 6 . (Default barrier phases are 2 and 6).

Miscellaneous Timers

These are the timers that are not on a per-phase basis. Red Rest Delay, Green Rest Delay and Red Revert are per-ring intervals while Stuck All Red Fail Delay is a per-controller interval.

MISCELLANEOUS TIMERS		
Time/Timer	Location	
Red Rest Delay Time	$\mathbf{1 0 6}$	0
Green Rest Delay Time	$\mathbf{1 0 7}$	0
Stuck All Red Fail Delay Time	10E	30
Red Revert Time	$\mathbf{1 0 F}$	2.0

LACO-4E USERS MANUAL
 SECTION 4 - SIGNAL TIMING

Red Rest Delay Time - The time before a phase that is flagged to Rest in Red starts its termination sequence. At the beginning of green of the Red Rest phase, this value is copied to the respective Ring delay timer. Rings A and B have separate Red Rest Delay Timers that can be viewed at locations 1AC and 1BC, respectively. The Red Rest Delay Timer will count down when the Red Rest phase is resting in green (timing no interval with no opposing calls). Whenever this condition is not met, the Red Rest Delay Timer resets to the value entered here. [0 to 255]
Green Rest Delay Time - The time before a phase that is flagged to Rest in Green causes termination of a non-concurrent, non-Green Rest phase. At the beginning of green of any phase, this value is copied to the ring's Green Rest Delay Timer at location 19A/B. The Green Rest Delay Timer will count down when any non-Green Rest phase is resting in green. Whenever this condition is not met, the Green Rest Delay Timer resets to the value entered here. [0 to 255]

Stuck All Red Fail Delay Time - By default, the Stuck-All-Red logic will put the controller into software flash 30 seconds after an all Red (with calls) condition is detected. This parameter allows the user to vary the failure detection window. A non-zero value entered here overrides the default of 30 seconds. [0 to 255]

Red Revert Time - The absolute minimum time that a just terminated phase must wait before it can be served again. At the beginning of each phase green, this value is copied to the respective Ring Red Revert Timer. The Red Revert timer times concurrently with the (just terminated) phase's Red Clearance timer. Ring A and Ring B have separate Red Revert Timers that can be viewed at locations 1AB and 1BB respectively. [0.0 to 25.5]

CONFIGURATION

This timing sheet page includes all of the phase "flag" type parameters, controller Communications Options and Manual Control configuration parameters. The Phase Function, Street Configuration and Miscellaneous phase flags further define the intersection's basic operation. Items on this page will generally only be set once.

Phase Function Flags

PHASE FUNCTION FLAGS									
Keystrokes: 1 + F + row		1	2	3	4	5	6	7	8
Permitted Phases	0								
Red Lock	1								
Red and Yellow Lock	2								
Minimum Vehicle Recall	3								
Maximum Vehicle Recall	4								
Rest in Green	5								
Rest in Red	6								
Barrier Recall	7								
Double Entry	8								
Exclusive Phases	9								
Restricted Phases	A								
Protected/Permissive Left Turn	B								
Lag Phases (Free)	C		X		X		X		X
First Phases After Start Up	D								
Yellow Start-Up Phases	E								
Yellow Start-Up Overlaps	F								

Permitted Phases - The phases that will time during normal operation of the intersection. Any changes to this location will be implemented immediately. If a Permitted Phase is timing any of its Green Intervals and that phase is removed from Permitted Phases, it will be forced off (after timing its Minimums) and no calls to that phase will be recognized.
Red Lock - Calls placed to any phase set at this location will be locked if those calls are placed during the phase's Red interval. The locked call will be removed when the flagged phase starts its Green interval.

LACO-4E USERS MANUAL
 SECTION 4 - SIGNAL TIMING

Red and Yellow Lock - The same operation as Red Lock above except it also includes calls placed during the phase's Yellow interval.
Minimum Vehicle Recall - Causes a call to be placed for a phase during its Red interval only. This call will remain in place until the phase goes green.
Maximum Vehicle Recall - Causes a continuous call to be placed for a phase. This results in the phase staying green until its Maximum Green Timer has expired (even if no Vehicle Extension time is set for the phase).
Rest in Green - Causes a call to be placed to a phase if that phase is not in service and no opposing calls to that phase exist.

Rest in Red - Causes a termination sequence to begin for a phase if that phase is resting in green and there are no opposing calls to that phase.

Barrier Recall - Causes a call to be placed at barrier crossing for phases flagged here.
Double Entry - Causes a call to be placed, at barrier crossing, for flagged phase if no other call exists in the quadrant of the flagged phase.
Exclusive Phases - Any phase flagged here must time by itself, even if a normally compatible phase has demand. If a normally compatible phase is in service when an Exclusive phase requests service, the nonExclusive phase will terminate as if a normally non-compatible phase was requesting service. A barrier crossing is required to implement changes to this location.
Restricted Phases - A phase set in this location will not be permitted to time concurrently with another Restricted phase. Restricted phasing can only be implemented in a standard quad configuration (phases 1, 2, 5, and 6 set to Main Street). Also, Exclusive phasing and Restricted phasing are mutually exclusive operations (on the same street). Exclusive phasing operation has priority over Restricted phasing operation. The data validation logic will not permit selecting a phase as Restricted if any other phases on that street are already selected as Exclusive. However, one street may implement Restricted phasing while the other street implements Exclusive phasing. A barrier crossing is required to implement changes to this location.
Protected/Permissive Left Turn - Prevents the controller from backing up from a lagging phase to a leading phase. A call placed by a phase flagged for Prot/Perm Left Turn (while a lagging phase is green) will only be answered after the lag phases terminate and the controller crosses the barrier. Until then, the call will be ignored by the controller. A call placed by a Prot/Perm Left Turn phase, when a more lagging phase is green, is indicated by its Call light flashing at a slow rate. The call in this instance will be ignored.
Note:
A lag (barrier) phase that is flagged as Prot/Perm Left Turn will never be served nor will a call to that phase be recognized or indicated in its call light.
Care should be taken when flagging a lead phase for both Prot/Perm and ped operation. The same logic that prevents vehicle service will also prevent ped service.

Care should be taken when flagging a lead phase for both Prot/Perm and RR Limited Service operation. Its supplemental lag phase must also be flagged for RR Limited Service operation, or a cross street phase must be placed on recall, or a mechanism must be in place that generates a cross street call when the Prot/Perm phase places a call.

Lag Phases (Free) - This location sets the lagging-most (barrier) phase for each quadrant, before crossing the barrier, when running Free (not in coordination). If no phases are set, the default is set to all even numbered phases. This location is ignored in non-standard quad configurations and barrier phases will be used as lag phases. A barrier crossing is required to implement changes in this location. Lag phasing for Manual Control Operation is set at location 3C2 on the CONFIGURATION timing sheet. Lag phasing for Coordination is set at $7-\mathrm{x}-0$ (where $\mathrm{x}=$ Plan Number) on the Coordination Attributes timing sheet.

LACO-4E USERS MANUAL
 SECTION 4 - SIGNAL TIMING

First Phases after Startup - Phases set in this location will be the first phases to go green after a long power down restart. Flagged phases must be able to time concurrently or the data validation logic will modify the data so that only concurrent phases remain. If only a single ring is flagged here, any compatible phase may go green once the flagged phase goes green.

Yellow Startup Phases - Flagged phases will start up in Yellow Clearance interval after a long power down restart. As with First phases, flagged phases must be able to time concurrently or the data validation logic will modify the data so that only concurrent phases remain. Flagged phases will time 5.0 seconds of Yellow Clearance regardless of the Yellow Clearance time entered on the Phase Timing Sheet.

Yellow Start Up Overlaps - Causes any flagged Overlap to start up yellow after a long power down restart. At least one of the Overlap's parents must be flagged as a Yellow Start Up Phase at location 1FE. Columns 1 through 6 correspond to Overlaps A through F. Flagged Overlaps will time 5.0 seconds of Yellow Clearance regardless of the overlap Yellow Clearance time entered on the Overlap Timing Sheet.

Street Configuration Flags

STREET CONFIGURATION									
Keystrokes: 1 + E + row		1	2	3	4	5	6	7	8
Main Street Phases	0	X	X			X	X		
Side Street Phases	1			X	X			X	X
2 Ped Load Switch	2		X						
4 Ped Load Switch	3				X				
6 Ped Load Switch	4						X		
8 Ped Load Switch	5								X
Ped A Load Switch	6								
Ped B Load Switch	7								
Ped Recall	8								
STA Mode	9								
Unused	A								
Unused	B								
Unused	C								
Driveway Flash	D								
2 Head Driveway Flash	E								
Overlap Driveway Flash	F								

Main Street Phases - All phases that will be on the Main Street side of the barrier (even phases that may not be Permitted). On a long power down restart, if this location is not set, the program will default to a standard quad configuration, that is phases $1,2,5$, and 6 will be set as Main Street phases. Since this parameter is so critical, User Flag Options (location 1DB) call light 2 must be turned on before this location can be changed. In addition, the change will not be implemented until a long power down restart occurs. Any phase not flagged as a Main Street phase will automatically be flagged as a Side Street Phase.
Side Street Phases - for observation only; the user cannot modify this location. After setting Main Street phases and performing a long power down restart, LACO-4E automatically sets Side Street phases based on phases set in Main Street phases above.

Ped Phase Assignments (locations 1E2 through 1E7) - Assigns a corresponding vehicle phase to each ped. Only one phase may be set in any of the six Ped assignments. Ped A and Ped B share Overlap A and Overlap B outputs, respectively. If either of these Overlaps is enabled (by setting parent phases on the Overlap Timing Sheet), the corresponding Ped assignment will be cleared. Note that Ped A and Ped B share the Manual Control inputs. If either Ped A or Ped B is set, the Manual Control feature will be disabled.

LACO-4E USERS MANUAL SECTION 4 - SIGNAL TIMING

Ped Recall - Also referred to as Rest in Walk. Causes a ped call to be placed for the flagged Ped phases. The call is continuous except during the flagged ped's Walk interval. If no opposing call is present, the Ped indication will "rest" in Walk. The Walk interval will time down until 1 second remains in its timer. When an opposing call is placed, the remaining Walk time expires and the Flashing Don't Walk interval begins. If the opposing call drops any time before the phase's Flashing Don't Walk interval ends, the Ped Walk interval restarts and the process begins all over again. Only enabled Peds (as set in locations 1E2 through 1E7 above) can be flagged for Ped Recall.
Semi-Traffic Actuated (STA) Mode - Only enabled Peds (as set in locations 1E2 through 1E7 above) can be flagged for STA Mode. STA (Semi-Traffic actuated) mode is a modified form of Ped Recall that is used only in Coordination. While the controller is running in coordinated mode, the ped phases flagged here will be placed on recall. When the ped serves, it will time out its Walk interval and rest in Walk until the coordinator sets a Force Off for the phase. At that time the ped will time its Flashing Don't Walk interval and then terminate.
Driveway Flash Phases - Causes the green output of the flagged phase to flash (at the same flash rate as the Ped Clearance interval) while timing its green intervals.
2 Head Driveway Flash - Causes the red output of the flagged phase to be set ON during the flagged phase's yellow interval. Any phase flagged here must also be flagged in Driveway Flash Phases above. Used when a 2 section (red and green only) signal head is providing indications for the flagged phase.
Driveway Flash Overlaps - Causes the green output of the flagged overlap to flash (at the same frequency as the Ped Clearance interval) while in its green interval. The 2 Head Driveway Flash modifier above does not apply to this parameter.

Miscellaneous Flags

MISCELLANEOUS FLAGS									
Keystrokes: 1 + d + row		1	2	3	4	5	6	7	8
Unused	0								
Associated Phase Recall-1	1								
Associated Phase Recall-2	2								
Associated Phase Recall-3	3								
Associated Phase Recall-4	4								
Associated Phase Recall-5	5								
Associated Phase Recall-6	6								
Associated Phase Recall-7	7								
Associated Phase Recall-8	8								
Yellow Calling Phase	9								
Yellow Phase Called	A								
User Flags	B								
Green Offset Sync Pulse	C								
Yellow Offset Sync Pulse	D								
Yellow Ranging Phase	E								
Yellow Ranging Overlap	F								

Associated Phase Recall - 1 - Any phase flagged here will have a locked call placed to it when phase 1 goes green. The call is dropped if the flagged phase is green.
Associated Phase Recall - 2 - Any phase flagged here will have a locked call placed to it when phase 2 goes green. The call is dropped if the flagged phase is green.
Associated Phase Recall - 3 - Any phase flagged here will have a locked call placed to it when phase 3 goes green. The call is dropped if the flagged phase is green.
Associated Phase Recall - 4 - Any phase flagged here will have a locked call placed to it when phase 4 goes green. The call is dropped if the flagged phase is green.

Associated Phase Recall - 5 - Any phase flagged here will have a locked call placed to it when phase 5 goes green. The call is dropped if the flagged phase is green.
Associated Phase Recall - 6 - Any phase flagged here will have a locked call placed to it when phase 6 goes green. The call is dropped if the flagged phase is green.
Associated Phase Recall - 7 - Any phase flagged here will have a locked call placed to it when phase 7 goes green. The call is dropped if the flagged phase is green.
Associated Phase Recall - 8 - Any phase flagged here will have a locked call placed to it when phase 8 goes green. The call is dropped if the flagged phase is green.
Yellow Calling Phase - If a phase flagged here is timing its yellow interval, a locked call is placed to all phases flagged in Yellow Phase Called, below.

Yellow Phase Called - A locked call is placed to all phases flagged here if a phase flagged in Yellow Calling Phase, above, is timing it's yellow interval. This parameter is ignored if no phases are flagged in Yellow Calling Phase.

LACO-4E USERS MANUAL
 SECTION 4 - SIGNAL TIMING

User Flags - Eight(8) flags that enable or disable functions and features. Press the number corresponding to the desired feature to enable/disable it.

User Flag Options (1DB)
1. Mid-Block Ped Crossing
2. Modify Main Street Phases (1E0)
3. Delay RR Track Clearance Phase Green
4. Modified Barrier Crossing (Ignore True Max)
5. Disable Daylight Savings Time Update
6. Enable Output File Editing
7. Freeway Offramp Anti-Backup Logic
8. Ignore Stuck-All-Red Failure

1 = Mid-Block Ped Crossing - Enables the special field indications for the vehicle phase when phase 4 ped is active. (See section 8)

2 = Modify Main Street Phases - This flag must be set in order to change the Main Street phases at location 1E0. A long power down is then required to implement the change at which time the flag is automatically cleared.
3 = Delay Track Clearance Phase Green until All overlaps have terminated - Inhibits the start of Track Clearance Green if any overlap is timing any of its clearance intervals.

4 = Modified Barrier Crossing - Permits a barrier crossing when any combination of Max-out and Gap-out occurs. If this flag is cleared, both rings must either Gap out or Max out.

5 = Disable Daylight Savings Time Update - Prevents the automatic "Fall back" and "Spring ahead" time adjustment for those agencies that do not recognize Daylight Savings Time.
6 = Disable Ped Recycle logic - Disables Ped Recycle logic for peds flagged as either STA Mode or Ped Recall.

7 = Freeway Off Ramp Anti-Backup Logic - Used to prevent freeway off-ramp traffic from backing up onto the freeway lanes. Causes priority service of the off-ramp phase when its advance detector stays actuated for a specified length of time. (See section 8)
8 = Ignore Stuck-All-Red Failure - Prevents the intersection from going into software flash if it gets stuck in an all-Red condition with active calls for more than 30 seconds. (Does not prevent the intersection from getting stuck all Red).

Green Offset Sync Phase - Used to notify another controller (usually the next one downstream in a communications link) when the flagged phase is green. Generally only one phase should be flagged at this location. Only used if one of this controller's Comm Ports is configured for comm option 2, Transmit 7-Wire Data (see next page).

Yellow Offset Sync Phase - Used to notify another controller (usually the next one downstream in a communications link) when the flagged phase is yellow. Generally only one phase should be flagged at this location. Only used if one of this controller's Comm Ports is configured for comm option 2, Transmit 7-W Data (see next page).
Yellow Ranging Phase - Allows the flagged phase to accept a time of less than 3.0 seconds (including 0.0 seconds) or greater than 5.0 seconds (up to 25.5 seconds) for its Yellow Clearance time.

Yellow Ranging Overlap - Allows the flagged overlap to accept a time of less than 3.0 seconds (including 0.0 seconds) or greater than 5.0 seconds for its Yellow Clearance time.

LACO-4E USERS MANUAL
 SECTION 4 - SIGNAL TIMING

Communications Options (See section 7 for more information on Communications)

System I.D - Communications address for the controller. Provides a unique identifier to an external polling system, on-street master, etc based on the AB3418E communications protocol. A value of " 0 " disables AB3418E Slave operation. [0-63]

Comm Port 1

Port 1 Mode - Assigns one of eight Communications options to Communications Port 1 (C2S). Any of the options may be assigned to any Comm Port. Any value other than the ones described below is ignored. [0-9]
$0=$ Communications disabled.
$1=W W V$ - Sets up the Comm Port to communicate with a $W W V$ Clock.
$2=$ Transmit 7 - Wire Data - Sets up the Comm Port to transmit coordination information in 7-Wire format.
3 = Receive 7 Wire Data - Sets up the Comm Port to receive coordination information in 7-Wire format. This is either serial data transmitted from another controller via modem or actual 7 -Wire parallel data that has been converted to serial data within the cabinet and then routed to the controller's Comm Port.

LACO-4E USERS MANUAL
 SECTION 4 - SIGNAL TIMING

4 = Transmit Time and Date - Sets up the Comm Port to transmit the controller's time and date information. Data is transmitted once per minute. Six(6) bytes are sent; Hours, Minutes, Day of Week (DOW), Day, Month and Year.
5 = Receive Time and Date - Sets up the Comm Port to receive time and date information from another 170E controller. The received time and date overwrites the controller's existing time and date.

6 = Transmit Plan Data - No longer used.
7 = AB3418E Master - Sets up the Comm Port to transmit the controller's time and data information in AB3418E format to any type controller that is capable of receiving AB3418E messages. This information is sent once per hour, on the hour.
$8=$ AB3418ESlave - Sets up the Comm Port to receive and respond to AB3418E messages from Central or on-street AB3418E Master.
$9=$ Bus Signal Priority - Sets up the Comm Port to receive and transmit Bus Priority messages.
Port 1 Baud - Assigns any one of eight baud rates to Communications Port 1 (C2S). Only one baud rate can be selected.

Port 1 Parity - Selects the parity for Communications Port 1 (C2S.
Comm Port 2 - Same as Comm Port 1 configuration
Comm Port 3 - Same as Comm Port 1 configuration
Comm Port 4 - Same as Comm Port 1 configuration

Manual Control Configuration (See section 5 for more information on Manual Control operation)

Manual Control Configuration													
Option	Location	1	2	3	4	5	6	7	8				
Omit Phases	$3 C 1$												
Lag Phases	$3 C 2$												
Recall Type	309												

Omit Phases - Phases to be omitted while in Manual Control operation. All phases flagged here will be ignored when the Manual Control Enable input is ON.

Lag Phases - This location sets the last phase for each quadrant (before crossing the barrier) while in Manual Control operation. If no phases are set, the default is all even numbered phases. This location is ignored in non-standard quad configurations and barrier phases will be used as lag phases. A barrier crossing is required to implement changes in this location

LACO-4E USERS MANUAL
 SECTION 4 - SIGNAL TIMING

Recall Type - This location determines what type of recall is in force during Manual Control operation. Any value other than the ones described below is ignored. [0-3]
$00=$ Disable Manual Control - Causes Manual Control operation to be ignored.
$01=$ No recall - Only phases or peds with detector actuations will be served.
02 = Vehicle Recall Only - All Permitted phases will be placed on recall while in the Manual
Control Enable input is ON.
$03=$ Ped and Vehicle Recall - All Permitted phases and enabled peds will be placed on recall while the Manual Control Enable input is ON.

DETECTORS

The Detector timing sheet contains all of the parameters related to vehicle or system detection. This is where the phases to be called by a detector are assigned along with any "attributes" which may modify the basic operation of each detector. Additionally, the detector Delay and Extension times are set here. Several other fields are provided for textual description only. A representative portion of the Detector Timing sheet is shown below

			File/ Slot/ Channel	Delay Code		Extended Call		Phase Flags									Attribute Flags								
App	Lanes	Description				Code	Seconds	Code	1	2	3	4	5		7	8	Code	1	2	3	4	5	6	8	8
				210		230		2B0									2D0								
				211		231		2B1									2D1								
				212		232		2B2									2D2								

Delay Time - (For each of 28 detectors). Any time entered here will cause the detector's actuation to be ignored for the duration of the delay timer. The delay timer resets to its initial value whenever the detector is not actuated or when its assigned phase is yellow. If multiple phases are assigned to a detector, the delay timer reset is disabled during any assigned phase yellow interval. The delay timer will count down to zero as long as an actuation is present. The delay timer is ignored when the detector's assigned phase is not red. [0 to 255]

Extended Call Time - (For each of 28 detectors). A time entered here will cause the detector's actuation to be extended (or carried over) for the duration of the extension timer. The extension timer resets to its initial value whenever the detector is actuated and counts down to zero as long as there is no actuation. The extension timer is ignored when the detector's assigned phase is not green. [0 to 25.5]

Phase Flags - (For each of 28 detectors) Default phase assignments are indicated by shaded boxes. If no phase is assigned for a detector, then actuation of that detector will cause the shaded phase to be called. Any phase entry for a particular detector will disable the default calling logic for that detector. Any phase or phases can be assigned to any detector. Some detector attributes (described below) will be ignored if multiple phases are assigned.
Attribute Flags - (For each of 28 detectors) Select the number of the desired Attribute(s).

DETECTOR ATTRIBUTES	
FLAG 1 - System Detector	FLAG 5 - Queue Clearing
FLAG 2 - Red \& Yellow Lock	FLAG 6 - Non-Counting
FLAG 3 - Yellow Disconnect	FLAG 7 - Special Delay Option 1
FLAG 4 - Red Calling Only	FLAG 8 - Special Delay Option 2

1 = System Detector - Prevents the flagged detector from placing a phase call when actuated.
$2=$ Red and Yellow Lock - Causes an actuation to be locked if it occurs during the detector phase's Red or Yellow interval.

LACO-4E USERS MANUAL
 SECTION 4 - SIGNAL TIMING

3 = Yellow Disconnect - Causes an actuation to be ignored if it occurs during the detector phase's Yellow interval.
4 = Red Calling Only - Causes an actuation to place a call to the detector's assigned phase only if it occurs during the detector phase's Red interval.
5 = Queue Clearing - Allows a detector to use Queue Clearing logic. A call will be placed to the detector's phase only during the phase's Red or Yellow interval. When the phase goes green, a Queue hold will be placed on the phase. If the actuation drops or the Queue Max timer expires, the detector will become disabled for the remainder of the current phase's service. Actuation of this type detector during its assigned phase green interval will not cause phase extension to occur.
$6=$ Non-Counting - This attribute will inhibit count accumulation for the purposes of Added Initial Green computations.
7 = Special Delay Option 1 - Allows the user to select phases that, when in service, override the detector's delay timer. These phases are selected in Special Delay Option 1 Phases (location 2F8).
8 = Special Delay Option 2 - Allows the user to select phases that, when in service, override the detector's delay timer. These phases are selected in Special Delay Option 2 Phases (location 2F9).

SPECIAL DETECTOR DELAY ASSIGNMENTS		Phase							
All Options: Delay Timer resets during detector phase yellow.	Code	1	2	3	4	5	6	7	8
Special Delay Option 1 (Attribute Bit 7) - Bypasses delay while flagged phases are timing.	2F8								
Special Delay Option 2 (Attribute Bit 8) - Bypasses delay while flagged phases are timing.	2F9								

Special Delay Option 1 Phases - Used in conjunction with Detector Attribute 7. When phases selected here are in service, the detector's delay timer is overridden and actuation is registered immediately. Multiple phases may be selected here.

Special Delay Option 2 Phases - Used in conjunction with Detector Attribute 8. When phases selected here are in service, the detector's delay timer is overridden and actuation is registered immediately. Multiple phases may be selected here.

SYSTEM DETECTORS

Stuck ON Threshold - The length of time, in minutes, that a detector must show constant presence before reporting a Stuck ON error condition. This location should be set to 2 minutes or greater. Setting this location to "000" disables Stuck ON error detection. Default value is 000 .

Stuck OFF Threshold - The length of time, in minutes, that a detector must show no presence before reporting a Stuck OFF error condition. This location should be set to 2 minutes or greater. Setting this location to " 000 " disables Stuck OFF error detection. Default value is 000 .

Chatter - The number of actuations per minute that a detector must register before reporting a Chatter error condition. This location should be set to 2 actuations per minute or greater. Setting this location to " 000 " disables Chatter error detection. Default value is 000.

Data Collection Period - Defines the period over which Volume, Occupancy and detector diagnostics are collected and computed. Default value is 60 seconds.

OVERLAPS

(See section 5 for details on Overlap operation)
Note: Only Overlap A timings are described here but timings for Overlaps B through F are identical.

OVERLAP A						
Keystrokes: $3+$ row + A		12		45	67	
NORMAL PARENTS	A					
GREEN OMT PARENTS	B					
RR PREEMPT PARENTS	c					
EV PREEMPT PARENTS	D					
LOAD SWITCH ASSIGNMENT	0					
DELAY TIME	1					
GREEN EXTENSION TIME	2					
Yellow Clearance time	3					
RED CLEARANCE TIME	4					

Normal Parents - (For each of 6 overlaps) Parent phases to be used during normal (i.e. non-preempt) service. Phases flagged here must be flagged as Permitted (location 1F0) or they will be ignored.
Green Omit Parents - (For each of 6 overlaps) Prevents the overlap green output from coming on when any parent phase flagged here is green.

RR Preempt Parents - (For each of 6 overlaps) Parent phases to be used during Railroad preemption. Phases flagged here must also be flagged for Railroad Limited Service (location 3A3) or they will be ignored.
EV Preempt Parents - (For each of 6 overlaps) Parent phases to be used during Emergency Vehicle preemption. Phases flagged here must also be flagged as Normal parents and/or RR Preempt parents.
Load Switch Assignment - Allows a three-color overlap output to be sent to any available load switch in addition to its default load switch assignment. This will override the output that is normally sent to this load switch. The value entered here corresponds to the CMU channel number assigned to each load switch. " 00 " means "not echoed", " 01 " thru " 08 " sends the overlap output to a vehicle load switch and " 13 " thru " 16 " echoes the overlap output to a ped load switch. Any other value is treated as " 00 ". [1 thru 8 or 13 thru 16]

Delay Time - (For each of 6 overlaps) Causes the start of overlap green to be delayed for the length of time specified here. The overlap delay timer is set to its initial value whenever the overlap goes red. When any parent phase (not set as a Green Omit Parent) goes green, the delay timer begins to decrement. As long as the delay timer is active, the overlap will output red. When the delay timer expires, if a parent phase is still green, the overlap will go green. [0 to 25.5]

Green Extension Time - (For each of 6 overlaps) Causes the overlap to continue to output green beyond its normal termination point. If another overlap parent goes green while this timer is active, the timer will be reset until the next overlap termination sequence begins. [0 to 25.5]

Yellow Clearance Time - (For each of 6 overlaps) The length of time that the overlap will output yellow when it terminates. The time entered here is restricted to between 3.0 and 5.0 seconds unless the overlap is selected in Yellow Ranging Overlap (location 1DF). [3.0 to 5.0]
Red Clearance Time - (For each of 6 overlaps) The length of time that the overlap will display red during termination. [0 to 25.5]

LACO-4E USERS MANUAL
 SECTION 4 - SIGNAL TIMING

PREEMPTION

(See section 5 for details on Preemption operation)

Railroad Configuration

RAILROAD CONFIGURATION		
RAILROAD SELECT (1, 2 or 3)	360	
ALL RED TIME AFTER RAILROAD FLASH	361	
RAILROAD TRACK CLEARANCE TIME	362	
LIMITED SERVICE MAX TIME	363	
RAILROAD LINK TO EV (see note to right)	364	
FREE TIME AFTER PREEMPT	365	
FREE TIME AFTER PREEMPT, TIMER	366	
MAX TIMER, MINUTES	367	
MAX TIMER, SECONDS	368	

Railroad Select - Sets the Railroad mode for this controller as follows:
$0=$ Railroad Preemption logic disabled.
1 = Railroad A only - Responds to the RR A input only and can only be configured for RR Flash operation.

2 = Railroad B only - Responds to the RR B input only and can be configured for RR Flash or Limited Service operation.
3 = Railroad A and Railroad B-Responds to both RR A and RR B inputs with Railroad A configured for RR Flash operation and Railroad B configured for Limited Service operation.

Any other value entered here will be changed to "01" automatically and treated as Railroad A only.
All Red After RR Flash - The length of time that the intersection will display all-Red after RR Flash stops at the end of preempt. If this location is set to " 00.0 ", and a RR Flash operation occurs, 5.0 seconds will be loaded into the Ring A and Ring B timers when RR operation ends. [0 to 25.5]
Track Clearance Time - The length of time that the phases flagged for Track Clearance (location 3A0) will spend in the green interval. If no time is entered here, then the intersection will go into RR Flash after all phases have terminated, regardless of what is entered for Railroad Select. [0 to 255]

Limited Service Max Time - The maximum length of time (in minutes) that Railroad B service will provide Limited Service operation. When this timer expires and the Railroad B input is still active, all phases in service will terminate and the intersection will go to RR Flash. If this location is set to " 00 ", then RR Limited Service operation will never occur. [0 to 255]

Railroad Link to EV - This enables an EV preempt sequence that will service automatically following the end of a Railroad preempt sequence. This can be used to provide guaranteed service (as defined by the linked EV's parameters) to selected phases after a RR preempt. [1, 2, 3 or 4 (for EV A, B, C or D)]
Free Time After Preempt - Causes the intersection to remain Free after a preempt sequence has ended. Allows phases to serve by demand only in order to clear any backup that may have occurred during the preempt. [0 to 25.5]

Railroad Phases

RAILROAD PHASES		$\mathbf{1}$	$\mathbf{2}$	$\mathbf{3}$	$\mathbf{4}$	$\mathbf{5}$	$\mathbf{6}$	$\mathbf{7}$	$\mathbf{8}$
TRACK CLEARANCE	3 A 0								
RAILROAD EXIT	$3 A 1$								
RAILROAD PED ONLY	$3 A 2$								
LIMITED SERVICE	3A3								

Track Clearance Phases - The phases that become active in order to clear vehicles from the railroad tracks before a train arrives at the intersection. If no phases are selected here, then the intersection will go into RR Flash after all phases have terminated regardless of what is entered for Railroad Select. Phases entered here must be able to time concurrently.
Railroad Exit Phases - The phases that will service first after the Railroad preempt sequence ends. Phases entered here must be able to time concurrently.
Railroad Ped Only Phases - Ped movements that will service without a corresponding vehicle service. Generally set for phases for which ped service is desired but which are not selected as Limited Service Phases. Phases entered here must also be enabled on the Configuration timing sheet.

Limited Service Phases - Phases that will time normally after the Track Clearance interval of a RR B preempt service. Any phases may be entered here.

Aux 3 Yellow Output Control

AUX 3 YELLOW OUTPUT CONTROL		
(Keypress $3+C+0$)		
	$\mathbf{1}$	Railroad A
	$\mathbf{2}$	Railroad B
	$\mathbf{3}$	Emergency Vehicle A
	$\mathbf{4}$	Emergency Vehicle B
	$\mathbf{5}$	Emergency Vehicle C
	6	Emergency Vehicle D
	7	Manual Control
	8	unused

Aux 3 Yellow Output Control - Allows the Aux 3 Yellow output to reflect the status of preemption and Manual Control. This output can be used to provide advance warning to motorists, etc. The Aux 3 Yellow output will go ON whenever any of the flagged functions is active.

EV Configuration

EV CONFIGURATION		$\mathbf{1}$	$\mathbf{2}$	$\mathbf{3}$	$\mathbf{4}$	$\mathbf{5}$	$\mathbf{6}$	$\mathbf{7}$	$\mathbf{8}$
EV FLAGS	390	\mid							
EV A CLEARANCE PHASES	391								
EV B CLEARANCE PHASES	392								
EV C CLEARANCE PHASES	393								
EV D CLEARANCE PHASES	394								

EV Flags - Modifies the default EV operation as follows:
1 thru $4=$ not used
5 = EV A truncates Ped Flashing Don't Walk interval. If the EV preempt occurs during the Walk interval, the Flashing Don't Walk interval will be skipped. If the EV preempt occurs during the Flashing Don't Walk interval, the remainder of the Flashing Don't Walk time will be skipped.

6 = EV B truncates Ped Flashing Don't Walk interval. If the EV preempt occurs during the Walk interval, the Flashing Don't Walk interval will be skipped. If the EV preempt occurs during the Flashing Don't Walk interval, the remainder of the Flashing Don't Walk time will be skipped.
7 = EV C truncates Ped Flashing Don't Walk interval. If the EV preempt occurs during the Walk interval, the Flashing Don't Walk interval will be skipped. If the EV preempt occurs during the Flashing Don't Walk interval, the remainder of the Flashing Don't Walk time will be skipped.

8 = EV D truncates Ped Flashing Don't Walk interval. If the EV preempt occurs during the Walk interval, the Flashing Don't Walk interval will be skipped. If the EV preempt occurs during the Flashing Don't Walk interval, the remainder of the Flashing Don't Walk time will be skipped.
EV A Clearance Phases - Those phases that will serve during the EV A clearance interval. Flagged phases must also be either Permitted phases or Railroad Limited service phases. Phases entered here must be able to time concurrently. If no phases are set, the preempt is ignored.

EV B Clearance Phases - Those phases that will serve during the EV B clearance interval. Flagged phases must also be either Permitted phases or Railroad Limited service phases. Phases entered here must be able to time concurrently. If no phases are set, the preempt is ignored.

EV C Clearance Phases - Those phases that will serve during the EV C clearance interval. Flagged phases must also be either Permitted phases or Railroad Limited service phases. Phases entered here must be able to time concurrently. If no phases are set, the preempt is ignored.

EV D Clearance Phases - Those phases that will serve during the EV D clearance interval. Flagged phases must also be either Permitted phases or Railroad Limited service phases. Phases entered here must be able to time concurrently. If no phases are set, the preempt is ignored.

LACO-4E USERS MANUAL
 SECTION 4 - SIGNAL TIMING

EVA Setup

EV A SETUP		
DELAY	310	
ACTIVE	311	
CLEARANCE	312	
MAXIMUM	313	
LINK TO EV	314	
MINIMUM	315	

Delay - Prevents any EV preempt from taking control of the intersection. The delay timer (observed at location 300) gets set and begins timing when an EV preempt input goes TRUE. While the delay timer is active, no Holds, Calls or Force Offs will be placed by the preempt logic. [0 to 255]

Active - The active timer (observed at location 301) gets set when an EV preempt input goes TRUE. When the delay timer expires, the active timer begins. During this period, the preempt logic places Holds and Calls to all of the EV Clearance phases. [0 to 255]

Clearance - This is the guaranteed length of time that the EV Clearance phases will display green. The clearance timer (observed at location 302) gets set when an EV preempt input goes TRUE. The clearance timer counts down after both the active and delay timers have expired and once all EV Clearance phases are green. If this time is not set, then the preempt sequence will go out of service as soon as the EV Clearance phases go green. [0 to 255]

Maximum - This time is used as a safeguard against a stuck ON preempt input. The max timer (observed at location 303) gets set when an EV preempt input goes TRUE. It begins to count down, in whole seconds, after both the active and delay timers have expired. NOTE: If this time is not set, then there will be no protection against stuck ON preempt inputs. [0 to 255]
Link to EV - This enables an EV preempt sequence that will service automatically following the end of this preempt sequence. This can be used to provide guaranteed service (as defined by the linked EV's parameters) to selected phases after a RR preempt. The EV will not be permitted to link to itself. Also, any value greater than " 004 " will be ignored. [1, 2, 3 or 4]
Minimum - This parameter is used to inhibit reservice of a preempt sequence for a set time. The EV minimum timer (location 316 for EVA, 326 for EVB, 336 for EVC and 346 for EVD) gets set when the preempt input goes ON. When the EV Clearance expires (indicating end of the preempt sequence), the EV minimum timer counts down to zero. As long as this timer is non-zero, further EV input actuations will be ignored. [0 to 255]

LACO-4E USERS MANUAL
 SECTION 4 - SIGNAL TIMING

BUS SIGNAL PRIORITY (BSP)

(See section 8 for details on BSP operation)

BUS PRIORITY CONTROL		
BSP MODE	$1 E 00$	
PRIMARY ADDRESS	$1 E 01$	
SECONDARY ADDRESS	$1 E 02$	
CITY CODE	$1 E 03$	
HARDWIRED ETA	$1 E 04$	
TRIP POINT	$1 E 05$	

	BSP MODE (1E00) Options
0	$=$ Auto
$1=$ Logic OFF	
2	$=$ Logic ON/No Communications
4	$=$ Headway/No Communications
7	$=$ Hardwire
$14=$	BSP OFF

Bus Priority Control

BSP Mode - Use the decimal display mode for this location. Setting it to zero activates the BSP Communications and Logic routines. [0, 1, 2, 4, 7 or 14]

Primary Address - The first of two address locations allowed under the BSP (modified NTCIP) protocol format. This location contains the lower order address information and has a range of 1-255. Address zero is undefined and will be ignored. Set the display to decimal mode to enter or view the data. [0-255]
Secondary Address - If this address location is not used, it must remain zero. The Secondary Address is actually an extension of the Primary Address. Each number in this location equals 256. For controller addresses greater than 255 set the extension number (1-31) at this location and the lower order address in the Primary Address. (i.e. controller address 300. Set Primary Address $1=1$ and Secondary Address $2=$ 44: $256 \times 1+44=300$). Set the display to decimal mode. [0-31]

City Code - The unique city code number assigned to your city by the MTA. This location is part of the addressing logic and must be set correctly to receive the Bus priority message. Set the display to decimal for this location. [0-127]
Hardwired ETA - Used when running the BSP program in the hardwired mode (7). In this mode of operation, there is no communication from the bus to the traffic signal controller. The operator must set an average ETA, in seconds, for the priority buses based on the detection system in use. Enter this number in the decimal display mode. [0-255]

Trip Point - The minimum time, in seconds, that the ETA timer can count down to and still perform the priority service. The operator should take into account the phase minimum timings and set the Trip Point accordingly. Set this location in the decimal display mode. [0-255]

LACO-4E USERS MANUAL
 SECTION 4 - SIGNAL TIMING

BUS PHASES		1	2	3	4	5	6	7	8
PRIORITY	$1 E 08$								
DEMAND	1E09								
NORTH BOUND	1E0A								
SOUTH BOUND	1E0B								
EAST BOUND	1E0C								
WEST BOUND	1E0D								

Bus Phases

Priority - Allows the operator to select which phases will be given the priority consideration. Set the display mode for binary and enter in the phases (one per ring) that will be given priority consideration.
Demand - Selects which phases will be included in the demand override logic. Priority service will not start if any phase, flagged for Demand Phase, is in Demand Override. If a phase Demand Override flag gets set during a priority, that phase will not have its timing modified. The Demand Override flag omits that phase from the logic, which inhibits modification of its green time. If the flag is not set, its green time will always be modified by the priority logic. This allows phases with continual heavy demand to be excluded from the logic, which steals green time from the non-priority phases and gives it to the priority phase. Set the display to binary mode for this data.
North Bound - The North bound priority vehicle. Using the binary display mode, set the priority phase that corresponds to buses traveling in the North bound direction.
South Bound - The South bound priority vehicle. Using the binary display mode, set the priority phase that corresponds to buses traveling in the South bound direction.
East Bound - The East bound priority vehicle. Using the binary display mode, set the priority phase that corresponds to buses traveling in the Eastbound direction.

West Bound - The West bound priority vehicle. Using the binary display mode, set the priority phase that corresponds to buses traveling in the West bound direction.

LACO-4E USERS MANUAL
 SECTION 4 - SIGNAL TIMING

Bus Override Table

BSP Override Table																	
	Hour:Min	Dir	S	M	T	W	T	F	S								
0	$:$																
1	$:$																
2	$:$																
3	$:$																
4	$:$																
5	$:$																
6	$:$																
7	$:$																
8	$:$																
9	$:$																
A	$:$																
B	$:$																
C	$:$																
D	$:$																
E	$:$																
F	$:$																

Data Entry for BSP Override Table

1. "9" + "9" sets controller to Table Entry mode pointing to BSP Table, Event 0.
2. Press "A" or "D" to move to desired Event.
3. Enter 4 digit Time of Day.
4. Enter 1 digit Direction Override.
$1=N \quad 3=N+S \quad A=S+W \quad D=N+S+W$
$2=S \quad 5=N+E \quad C=E+W \quad E=S+E+W$
$4=\mathrm{E} \quad 6=\mathrm{S}+\mathrm{E} \quad 7=\mathrm{N}+\mathrm{S}+\mathrm{E} \quad \mathrm{F}=\mathrm{All}$
$8=W \quad \mathbf{9}=\mathrm{N}+\mathrm{W} \quad \mathbf{B}=\mathrm{N}+\mathrm{E}+\mathrm{W} \mathbf{0}=$ None
Then press " E " to select Days of Week
5. Select Day(s) of Week.
6. Press "A" or "D" to move to next Event.
7. Repeat steps 3 through 6 for each Event
8. Press "F" key to finish.

The BSP Override Table (Table 9) allows sixteen entries and requires four user entered values: Hour followed by Min followed by the Direction override code and the Day of Week flag(s). This table is searched every minute along with the TOD tables. If a search of this table matches the current time and day of week in the controller, all priority phases associated with the "Dir" entry will be overridden.

ZIP COORDINATION

(See section 6 for details on Zip Coordination operation)
The following parameters are common to both Zip Coordination and Standard Coordination and are described in the Coordination subsection:

- System Manual (4-0-0)
- Local Manual (4-0-1)
- Minimum Cycle Length (4-0-8)
- Maximum Cycle Length (4-0-9)
- Plan Offsets (7-A-1 through 7-A-9)
- Midnight Sync Pulse Hour (7-A-B) and Minute (7-A-C)
- Offset Timing Plan (7-A-A)

The following parameters apply to Zip Coordination only:

Parameters		Plan	$\begin{gathered} \text { Plan } \\ 2 \end{gathered}$	$\underset{3}{ }{ }_{3}$	Plan_{4}	$\begin{gathered} \text { Plan } \\ 5 \end{gathered}$	Plan	Plan	$\begin{gathered} \text { Plan } \\ 8 \end{gathered}$	$\underset{9}{\text { Plan }}$
		1	2	3	4	5	6	7	8	9
Cycle Length	0									
Force Off $\varnothing 1$	1									
Force Off $\boldsymbol{\varnothing} 2$	2									
Force Off $\varnothing 3$	3									
Force Off $\varnothing 4$	4									
Force Off $\varnothing 5$	5									
Force Off. 6	6									
Force Off $\boldsymbol{\varnothing} 7$	7									
Force Off $\varnothing 8$	8									
Hold Release	9									

Zip Coord Enable - Set this location to any non-zero value to enable the Zip Coord timing and disable the Standard Coordination timing.

NOTE: The following parameters can be set for each of nine plans.
Cycle Length - The length of the coordination cycle to be timed. This time must be greater than the Minimum Cycle Length and less than the Maximum Cycle Length above. [0 to 255]

Force Off 1 (through Force Off 8) - The point in the current cycle at which a Force Off is placed for the applicable phase. Force Off 1 applies to phase 1 and so on through Force Off 8 . The Force Off is applied for 1 second. The time entered here must be less than the cycle length. [0 to 255]

Hold Release - The point in the cycle at which the coordination Hold is released from phases 2 and 6 (the default coordinated phases). The time entered here must be less than the cycle length. [0 to 255]

LACO-4E USERS MANUAL
 SECTION 4 - SIGNAL TIMING

COORDINATION

(See section 6 for details on Coordination operation)
The following parameters are common to both Zip Coordination and Standard Coordination. Refer to the Coordination 1 Timing Sheet (Appendix A7).

Plan Offset Times - The desired offset time between the Master Cycle Timer and the Local Cycle Timer, for each of the nine plans. Values entered here should be less than the plan's Cycle Length. [0 to 255]

Offset Timing Plan - This defines which plan number to run when the Local Coordinator is configured for Offset Timing Mode. If no plan is entered, the default is Plan 3. [1 to 9]

Midnight Sync Pulse - The Hour and Minute that the Midnight Sync pulse will be transmitted to slave controllers in the "Transmit 7-Wire" communication message. Hour [0 to 23], Minute [0 to 59]

System Manual - This parameter sets the Master operating mode. Available entries are:
$0=$ Automatic Time Base mode. Searches the Time Of Day table (as indicated in location 405) and runs the plan/function found there.
1 through $9=$ The Master coordinator is manually set to operate the plan number indicated.
$14=$ Manually sets the Master coordinator to operate in the Free mode.
Any Other entry = The entry is ignored and the last commanded plan is used.
Local Manual - A non-zero value here overrides the plan commanded by the Master (as indicated in System Manual, above) or the TMC (as indicated in location 404). The available entries are:
$0=$ Automatic Time Base mode. Searches the Time of Day table (as indicated in location 405)
and runs the plan/function found there.
1 through $9=$ manually runs the plan number entered here.
11 = manually causes the local coordinator to run in Slave Mode.
12 = manually causes the local coordinator to run in Offset Timing Mode.
14 = manually disables Local Coordination.
$15=$ manually sets the controller to operate in Flash mode (Local Coordinator runs Free).
Minimum Cycle Length - The minimum cycle length that can be timed. If this value is set to " 255 ", it will automatically be changed to " 254 ". [0 to 254]
Maximum Cycle Length - The maximum cycle length that can be timed. This value must be greater than the Minimum Cycle Length, above, or it will automatically be changed to 255. [11 to 255]

LACO-4E USERS MANUAL
 SECTION 4 - SIGNAL TIMING

The remaining entries in this first column are controlled by the program and are for observation only.

- Master Plan (402) - The Plan number being commanded by the Master Coordinator.
- Local Plan (403) - The Plan number actually implemented by the Local Coordinator.
- TMC Override (404) - Overrides Time of Day plan when downloaded from Central.
- Time of Day Plan (405) - The Plan number that is selected by the Local Coordinator's TOD logic.
- Special Function (406) - The currently commanded state of the Special Function output.
- Current Table (407) - The TOD table that the Local Coordinator is using to select the Time of Day Plan.
- Master Cycle Timer (40A) - The current value of the Master Cycle timer, updated each second.
- Local Cycle Timer (40B) - The current value of the Master Cycle timer, updated each second.
- New Offset Time (40C) - The Offset time associated with the current commanded Plan
- Current Offset Time (40D) - The current offset time. This may be different from the New Offset time when the coordinator is in transition.
- Last Master Cycle (40E) - The time in the Master Cycle timer when the last Sync Pulse was sensed.
- Last Local Cycle (40F) - The time in the Local Cycle timer when the last Sync Pulse was sensed.

Intervals - Intervals are discrete points within a plan cycle indicating when a coordination function is turned ON or OFF. The first interval (row 0) defines the plan's Cycle Length (but is also treated by the program as Interval 1 with a fixed time of zero seconds). It should be the largest value of any entry in that column. Interval times should be in increasing value with increasing row number and cannot be greater than the cycle length. Also, all entries must be sequential (no entry can be skipped). [0 to 255]

LACO-4E USERS MANUAL
 SECTION 4 - SIGNAL TIMING

Coordination Functions:

Coordination Functions work in conjunction with the Coordination Interval parameters. For example, if there is a time entered for interval 3 of Plan 2 (location 423), then the functions below will be applied to the phases entered in row 3 of Plan 2 (locations 483, Force Off; 493, Hold; 4A3, Ped Restrict; 4B3, Call).

Force Offs - Indicates the phases to be terminated at the desired interval when an opposing call is present. The Force Off will remain in effect until the phases are no longer indicated in the subsequent intervals (or until cycle zero if there are no subsequent intervals).
Holds - Indicates the phases to be held at the desired interval. The Hold will remain in effect until the phases are no longer indicated in the subsequent intervals (or until cycle zero if there are no subsequent intervals).

Ped Restricts - Indicates the phases for which the ped operation will be restricted (not be answered) at the desired interval. The Ped Restrict will remain in effect until the phases are no longer indicated in the subsequent intervals (or until cycle zero if there are no subsequent intervals).

Calls - Indicates the phases to be called at the desired interval. The Call will remain in effect until the phases are no longer indicated in the subsequent intervals (or until cycle zero if there are no subsequent intervals).

COORDINATION ATTRIBUTES

		PLAN 1								
Attributes		1	2	3	4	5	6	7		8
Coordination Lagging Phases	0									
Minimum Vehicle Recall Phases	1									
Pedestrian Recall Phases	2									
Maximum Vehicle Recall Phases	3									
Barrier Recall Phases	4									
Green Calling Phases	5									
Green Call-To Phases	6									
	7									
Phases to use Max 1	8									
Red Rest Phases	9									
Omitted Phases	A									
Phases to Omit Systems Detectors	B									
STA Mode Phases	C									
	D									
	E									
	F									

The coordination phase attributes operate the same as the Phase Function Flags on the Configuration Timing Sheet. The coordination phase attributes are only active when their corresponding coordination plan is active. Any phases flagged here must also be flagged as Permitted phases (location 1F0).

Any phases flagged here will be in addition to any phases flagged for the equivalent Phase Function Flag (on Timing Sheet 2). For example, if phases 2 and 6 are flagged for Phase Function Flag minimum recall and phases 3 and 7 are flagged for Plan 2 Coordination Minimum Recall, then phases 2, 3,6 and 7 will all be on minimum recall while Plan 2 is active.

LACO-4E USERS MANUAL
 SECTION 4 - SIGNAL TIMING

Coordination Lagging Phases - This location sets the lagging-most (barrier) phase for each quadrant, before crossing the barrier, when running coordinated. If no phases are set, the default is set to all even numbered phases. This location is ignored in non-standard quad configurations and barrier phases will be used as lag phases. A barrier crossing is required to implement changes in this location. If no phases are selected here, then those phases set at location 1FC (LAGFRE) will be used.

Minimum Vehicle Recall Phases - Causes a call to be placed for a phase during its Red interval only. This call will remain in place until the phase goes green.

Ped Recall Phases - Causes a ped call to be placed for the flagged Ped phases. The call is continuous except during the flagged Ped's Walk interval. If no opposing call is present, the Ped indication will "rest" in Walk. The Walk interval will time down until 1 second remains in its timer. When an opposing call is placed, the remaining Walk time expires and the Flashing Don't Walk interval begins. If the opposing call drops any time before the phase's Flashing Don't Walk interval ends, the Ped Walk interval restarts and the process begins all over again. Only enabled Peds (as set in locations 1E2 through 1E7) can be flagged for Ped Recall.

Maximum Vehicle Recall Phases - Causes a continuous call to be placed for a phase. This results in the phase staying green until its Maximum Green Timer has expired (even if no Vehicle Extension time is set for the phase).
Barrier Recall Phases - Causes a call to be placed at barrier crossing for flagged phase(s).
Green Calling Phases - This parameter works in conjunction with Green Call-To phases, below. While any phase flagged here is green, the Green Call-To phases will have a locked call placed for them. Both of these parameters must be set or they will be ignored.

Green Call-To - This parameter works in conjunction with Green Calling phases, above. A locked call will be placed to all phases flagged here whenever any Green Calling phases are green. Both of these parameters must be set or they will be ignored.

Phases to Use Max I - Forces the flagged phases to use Max I green time instead of the default Max II green time.

Red Rest Phases - Causes a phase to terminate and rest in red if that phase is resting in green and there are no opposing calls to that phase.
Omitted Phases - Causes the program logic to ignore all phases flagged here while the configured plan is active. If a flagged phase is in service when the plan takes effect, it will be forced off (even if there is no call to a conflicting phase).

Phases to Omit System Detectors - Future implementation.
STA (Semi-Traffic Actuated) Mode Phases - Only enabled Peds (as set in locations 1E2 through 1E7) can be flagged for STA Mode. While the controller is running in coordinated mode, the ped phases flagged here will be placed on recall. When the ped serves, it will time out its Walk interval and rest in Walk until the coordinator sets a Force Off for the phase. At that time the ped will time its Flashing Don't Walk interval and then terminate.

COORDINATION TABLES

(See section 6 for details on Coordination Tables)
Coordination tables provide the user with more flexibility and options as to what Plan or Function to run and when to run it. The tables fall into two categories, Time of Day tables and "Exception" tables. Table 0 is the default Time of Day table.

Time of Day Tables (0 through 4)

TABLE 0 - Time Of Day

Plan:
1 through 9
Function:
A - Special Function Output Steady ON
B - Special Function Output Flashing
C - Offset Timing Mode
D - Special Function Output OFF
E - Free Mode
F - Time of Day Flash

Hour: Min - Specifies the time of day, military time, that the indicated plan or function is to take effect.
Plan or Function - One of nine coordination plans or six coordination functions to take effect at the specified time and day.
Day of Week - Indicates which days of the week a plan or function is to take effect.
Annual Event Table (5)
This table is used for any user-defined Annual events.
TABLE 5 - Annual Events

Event	Month/Day	Table	Sun 1	Mon 2	Tue 3	Wed 4	Thu 5	Fri 6	Sat 7
$\mathbf{0}$									
$\mathbf{1}$									
$\mathbf{2}$									
3									
$\mathbf{4}$									
$\mathbf{5}$									
6									
7									
$\mathbf{8}$									
9									
A									
B									
C									
D									
E									
F									

Month/Day - Enter the month and day, in MM/DD format, of the annual event to be searched for.
Table - Enter the Time of Day table number (tables 0 through 4) to be used when the annual event occurs.

Day of Week - Enter the day(s) of the week that the annual event must fall on in order to run the selected table.

LACO-4E USERS MANUAL
 SECTION 4 - SIGNAL TIMING

Floating Holiday Table (6)

This table is populated with the Los Angeles County default Floating Holiday data.
TABLE 6 - Floating Holidays

Event	Month/Day	Table	Sun 1	Mon 2	Tue 3	Wed 4	Thu 5	Fri 6	Sat 7
$\mathbf{0}$	$01 / 03$	1		\mathbf{X}					
$\mathbf{1}$	$02 / 03$	1		\mathbf{X}					
$\mathbf{2}$	$05 / 09$	1		\mathbf{X}					
$\mathbf{3}$	$09 / 01$	1		\mathbf{X}					
$\mathbf{4}$	$11 / 04$	$\mathbf{1}$					\mathbf{X}		
$\mathbf{5}$									
$\mathbf{6}$									
$\mathbf{7}$									
$\mathbf{8}$									
$\mathbf{9}$									
A									
B									
C									
D									
E									
F									

Month/Day - Indicates the month and on which occurrence of the specified day of week that specified table is to be used. For example, Event 0 will invoke Time of Day table 1 on the $3^{\text {rd }}$ Monday in January.
Table - Enter Time of Day table number (0 through 4) to be used, or "B" to ignore BSP Priority logic for the specified holiday.

Day of Week - Indicates which day of week that the holiday must fall on in order for the indicated table to be run.

Exception Day Table (7)

This table indicates all fixed holidays. All fixed holidays observed by Los Angeles County are defaulted here.

TABLE 7 - Exception Days

Event	Month/Day	Table	Sun	$\begin{gathered} \text { Mon } \\ 2 \end{gathered}$	${ }_{3}$	$\underset{4}{\mathrm{w}_{4}}$	${ }_{5}^{\text {Thu }}$	$\underset{6}{\text { Fri }}$	Sat 7
0	01/01	1		X	X	X	X	X	
1	01/02	1		X					
2	07/04	1		X	X	X	X	X	
3	07/05	1		X					
4	11/10	1						X	
5	11/11	1		X	X	X	X	X	
6	11/12	1		X					
7	12/24	1		X	X	X	X	X	
8	12/25	1		X	X	X	X	X	
9	12/26	1		X				X	
A									
B									
C									
D									
E									
F									

Month/Day - Enter the month and day, in MM/DD format, of the exception day to be searched for.
Table - Enter the Time of Day table number (tables 0 through 4) to be used, or "B" to ignore BSP Priority logic for the specified holiday.

Day of Week - Enter the day(s) of the week that the exception day must fall on in order to run the selected table.

LACO-4E USERS MANUAL
 SECTION 4 - SIGNAL TIMING

PROGRAMMABLE LOGIC

This feature is new to the LACO series of programs. It provides all common logic operations including AND, OR and XOR gates (plus their negations), a Set/Reset Latch, a Relay, and Delay, Extension and One-Shot timers. Only C1 input pins can be modified but both C1 input pins and output pins can be used to modify the input. This timing sheet uses "logic" pin numbers that are derived from the I/O port and bit numbers. The logic pin numbers (and their associated I/O function and C 1 pin number) can be found on the Programmable Logic Worksheet in Appendix A15, Appendix E1 (Inputs) and Appendix E2 (Outputs). See section 8 for details on this feature, including operation of each of the gates/functions and examples.

Note that this data is accessed using the Extended Memory Display mode. This requires that the first key press be " 8 " followed by the 4-digit memory location. For example, to enter data for Input 1 of And Gate 1, the 5 -key sequence would be " $8-1-2-8-0$ ". See section 2 for details on the Extended Memory Display mode.

Logic Gate Inputs - Enter the logic pin number of the input, output or logic gate link that is to be used for the desired logic operation. Logic pin numbers are entered just as they appear in the appendix referenced above. For example " 22 " corresponds to the $I 1$ detector input.
Logic Gate Outputs - Enter the logic pin number of the input that gate logic is to act on (or logic gate link if this output is to be used as in input for another logic function).
Latch Inputs - Enter the logic pin number corresponding to the input, output or logic gate link that is to be used as the latch Set or Reset input.

Latch Outputs - Enter the logic pin number of the input that the Latch logic is to act on (or logic gate link if this output is to be used as in input for another logic function).

Relay Input - Enter the logic pin number corresponding to the input, output or logic gate link that is to be used as the Relay input.

Relay Coil - Enter the logic pin number corresponding to the input, output or logic gate link that is to be used as the Relay Coil control.

Relay Outputs - Enter the logic pin number of the input that the Relay logic is to act on (or logic gate link if this output is to be used as in input for another logic function).
Timer Input - Enter the logic pin number corresponding to the input, output or logic gate link that is to be used as the Timer input.
Timer Type - This parameter allows the user to select the timer type. The available options are:

$$
\begin{array}{ll}
01=.1 \text { second Delay timer } & 10=\text { Whole second Delay timer } \\
02=.1 \text { second Extension timer } & 20=\text { Whole second Extension timer } \\
03=.1 \text { second One Shot timer } & 30=\text { Whole second One Shot timer }
\end{array}
$$

Timer Time - Enter the desired timer interval here. The time entered here depends on the scale of the selected timer type. For a 3.0 second "tenth seconds" timer, enter " 030 ". For a 3 second "whole second" timer enter "003".

Timer Output - Enter the logic pin number of the input that the Timer logic is to act on (or logic gate link if this output is to be used as in input for another logic function).
SECTION 5 OVERLAPS and PREEMPTION
OVERLAPS
PREEMPTION
PREEMPTION OUTPUT
RAILROAD
EMERGENCY VEHICLE
MANUAL CONTROL

LACO-4E USERS MANUAL
 SECTION 5 - OVERLAPS and PREEMPTION

OVERLAPS

LACO-4E offers the industry standard Overlap functionality with a few enhancements:

- Parents can be selected separately for Normal, RR or EV operation.
- All 3-color overlap outputs can be redirected to unused vehicle or ped load switches.
- All overlaps can be configured to time a delay prior to start of green.
- Green Omit logic is available to overlaps for ped protection on right turns.
- Individual clearance times are available for green, yellow and red indications.

Basic overlap logic is such that when any parent phase is green, the overlap is also green. Additionally, the overlap will remain green if a parent phase to that overlap is terminating to another parent phase. The only exception to this logic is when a green parent phase is also flagged as a Green Omit parent. When any Green Omit parent phase is green, the overlap will be dark. This is true of both 3-color overlaps and 2-color overlaps.

NOTE

The Green Omit feature is intended for two section field displays. Any 3-color overlap that uses the Green Omit feature should be redirected to an unused ped load switch. If that is not possible, the output channel should be configured in the cabinet such that a Red Fail condition is not triggered when the green indication goes dark.

The LACO-4E logic normally allows selection of FAZNXT (the phases to serve next) up until the last 0.1 second of the terminating phase's Red Clearance time. This provides crisp response to actual intersection demand. An exception is made if an overlap is green. When an overlap parent phase terminates, the phase that caused termination of the parent phase is locked at the beginning of the terminating phase's yellow interval. This phase will be serviced next even if the demand drops.

As mentioned above, each overlap can have separate parent phase assignments for Normal operation, Railroad preempt or Emergency preempt. For Normal parents, the selected phases must also be permitted phases. For Railroad parents, the selected phases must also be either Track Clearance phases or Limited Service phases. For Emergency Vehicle parents, the selected phases must also be either permitted phases or Limited Service phases. If an overlap is in service during Normal operation when a Railroad or EV preempt sequence starts, the overlap will continue or terminate based on the parent phases selected for each operation.

If an overlap is due to terminate (because its parent phase is terminating to a non-parent phase) across the barrier, and a parent phase exists in a non-calling ring across the barrier, then a call will be placed to the first parent phase in the non-calling ring so that the overlap may continue. This is done to eliminate the occurrence of an inactive ring in such situations. This logic is analogous to the phase Barrier Recall logic but is fixed and cannot be disabled by the user.

Any 3-color overlap output can be echoed to any of the Output File load switches. This is done by entering the location of the new load switch for the desired overlap, i.e. location 30D for Overlap D. The CMU channel numbering system is used as a reference for this parameter. Enter "001" through "008" to echo to the phase load switches or " 013 " through " 016 " to echo to the ped load switches. Any other value will be reset to " 000 " and no echo will take place. Note that this is a "blind" echo in that the echoed overlap will overwrite any other indications being sent to the load switch. Therefore, care should be taken to ensure that the load switch is not being used by another phase or ped.

PREEMPTION

LACO-4E's preemption logic is exceptionally flexible and versatile as indicated below:

Railroad

- Three different modes of operation
- Two prioritized (concurrent) inputs
- Both limited service and flash operation supported
- Concurrent emergency vehicle service is supported during railroad limited service operation
- Ped only logic is supported during railroad limited service operation
- Can link to a selected EV sequence following the railroad sequence
- Three timers provided
- Four phase flags provided

Emergency Vehicle

- Four equal priority inputs
- Five timers provided
- Can link to a (different) selected EV sequence following the actuated sequence

Manual Control

- Dedicated Omitted phases
- Dedicated Lag phases
- Three phase/ped recall options

PREEMPT OUTPUT

Auxiliary output file slot 3 (AUX 3) can be set to output preemption and manual control indications. At location 3C0, select any combination of Railroad preempt, Emergency Vehicle preempt or Manual Control desired. When any of the selected operations is active, the Aux 3 Yellow output will be turned on. This output can then be used to provide a visible preempt condition at the intersection or it can be sent up/down stream to provide preempt status to adjacent controllers. This can be useful if the receiving controller has some form of programmable logic similar to LACO-4E.

RAILROAD
The Railroad preemption feature contains logic that one would expect to find in the higher end ATC controllers, plus it has one function that is unique to LACO programs. All conventional programs provide two Railroad preempts and four Emergency Vehicle preempts (some also offer an additional four low priority preempts, generally intended for implementation of Bus Priority Service). LACO-4E provides the same six preempts with two significant enhancements.

- The two Railroad inputs are processed concurrently providing prioritization of railroad service. The higher priority input, RR A, results in Flash operation while the lower priority input, RR B, results in Limited Service operation. If the RR B preempt is active, a RR A input will override the RR B sequence. Conversely, the RR B input is ignored when the RR A sequence is active.
- An Emergency Vehicle preempt sequence can serve concurrently under a Railroad Limited Service preempt sequence (nested preempts). Any EV preempt sequence with Clearance phases that are also Railroad Limited Service phases may be serviced while that Limited Service operation is active.

The following parameters can be used in any combination to provide customized response to Railroad preemption:
Railroad Select - Three operating modes; RR Flash only (single input), Limited Service only (single input) or RR Flash and Limited Service together (dual input).
All Red time after Flash - This is the length of time the intersection will show all Red outputs. If no value is entered here, the controller will time 5.0 seconds of all Red.

Railroad Track Clearance time - This will be the minimum length of time that the Track Clearance phases can output a green indication. If this value is set to zero, then track clearance is skipped and the intersection defaults to RR Flash operation, regardless of the entry in Railroad Select.
Limited Service Max time - If a non-zero value is entered here, when the RR Max timers expire, the intersection will revert to RR Flash operation for the duration of the preempt sequence. If zero is entered here, no time limit is placed on the duration of the Limited Service sequence.
Railroad Link to EV - Entering an EV number here causes that EV sequence to service immediately following the end of the Railroad preempt sequence. This can provide a more controlled transition from Railroad operation to Normal operation.
Free Time After Preempt - This parameter is used for both Railroad and EV operation. When any preempt sequence goes active, the local coordinator is suspended and control of the coordination function outputs is given to the preemption logic. After the preemption sequence ends, the Free Time After Preempt timer must expire before control of the coordination function outputs is passed back to the local coordinator. This allows a period of Free operation following a preemption sequence.
Track Clearance phases - Select the phase numbers corresponding to the movements that cross the path of the oncoming train. Phases entered here must be concurrent. The data validation logic prohibits entry of non-concurrent phases. If no phases are selected here, then track clearance is skipped and the intersection defaults to RR Flash operation, regardless of the entry in Railroad Select.

LACO-4E USERS MANUAL SECTION 5 - OVERLAPS and PREEMPTION

Railroad Exit phases - Under default operation, when a preempt sequence ends, the next phases to be served are determined by which railroad mode was in operation. For RR Flash, the next phases (with demand) following the preempted phase(s) will serve first. This includes any phases which may have been called by actuation (even if later dropped) while the preempt sequence was active. For Limited Service, the next phases (with demand) following the last phases in service when the preempt sequence ended will serve first. In both of these modes, Railroad Exit phases will override the default operation and serve first. Only concurrent phases can be entered here. The data validation logic prohibits entry of non-concurrent phases.
Railroad Limited Service phases - These are phases that correspond to vehicle movements that are safe to service while a train is crossing one of the intersection's approaches. Generally this includes any phases except the Track Clearance phases. During Limited Service operation, all Limited Service phases operate as normal.
Railroad Ped Only phases - This parameter allows ped operation for a disallowed phase during Limited Service operation only. Normally, any phase not selected as a Limited Service phase has both its vehicle and ped logic disabled. However, it's not unusual to desire ped service for a phase that can't allow vehicle service. When the railroad preempt sequence begins its Limited Service segment, the controller will respond to all Railroad Ped Only calls (actuated or recall) the same as in Normal operation with one exception. When the ped phase begins, that ring's Max timer is set to zero. Consequently the ped will only serve once when there is a conflicting call. During the ped service, the vehicle indication will remain Red and only the Walk and Don't Walk intervals will time.

Mode 1 Operation

This mode uses the RR A input only and results in Flashing operation. Typically, when the RR A input (C1-51) goes ON, all phases in service go immediately to their termination sequence. No ped service is permitted during Track Clearance and all ped indications go immediately to solid Don't Walk. If an overlap is Green and at least one of the Track Clearance phases is selected as a Railroad Overlap parent, then the overlap will continue Green through those phases. Once all Track Clearance phases have gone Green, the Track Clearance timer begins counting down to zero. When the Track Clearance timer expires, all phases and overlaps in service terminate. When no phases or overlaps are in service, the controller puts the intersection into software flash and the ped heads go dark. Flashing operation remains in effect until the RR A input goes OFF. At this point the controller outputs all red (steady Don't Walk for the ped indications) for the length of time set in All Red Time After Railroad Flash (location 361). When this timer expires, Railroad Exit phases will service first if set. Otherwise, service will begin for the first phase (with demand) after the phase(s) in service when preemption started.

Mode 2 Operation

This mode uses the RR B input only and results in either Flashing operation or Limited Service operation. Typically when the RR B input (C1-52) goes ON, all phases in service go immediately to their termination sequence. No ped service is permitted during Track Clearance and all ped indications go immediately to solid Don't Walk. If an overlap is Green and at least one of the Track Clearance phases is selected as a Railroad Overlap parent, then the overlap will continue Green through those phases. Once all Track Clearance phases have gone Green, the Track Clearance timer begins counting down to zero. When the Track Clearance timer expires, all phases and overlaps in service terminate. If neither Limited Service phases nor Railroad Ped Only phases have been set, the operation is the same as in Mode 1 above (Flashing Operation). If either of those two parameters is set, then vehicle, overlap (using Railroad Overlap parents) and ped service will occur as during Normal operation. Additionally, this mode allows Emergency Vehicle (EV) service during the Limited Service segment. EV service is the same as during Normal operation except only those EV Clearance phases that are also Limited Service phases will serve.

Mode 3 Operation

This mode uses both of the railroad inputs and can result in either Flashing operation, or Limited Service operation or both (sequentially) depending on the order of actuation. The RR A input has priority over the RR B input. Therefore, anytime the RR A input goes ON, the result will be Flashing operation. If the RR B input comes on first, Limited Service operation will result until a RR A input goes ON. At that point, Limited Service phases are terminated immediately and the result is Flashing operation. This mode is useful when multiple parallel tracks are present with trains of different speeds on different tracks (for example slow freight train and fast commuter line).

Railroad relay requirements

The program senses a Railroad input when the voltage at $\mathrm{C} 1-51$ or $\mathrm{C} 1-52$ is 12 vdc . This means that the Railroad preempt circuit must be connected to the normally closed contracts of the railroad cabinet relay. An approaching train causes the railroad cabinet relay to energize, causing the normally closed contacts to become open. This removes the 115 vac from the A.C. isolator input and, if properly configured, the Railroad preempt sequence begins.

Typical Railroad Preempt Circuit

Additional Points

- Entrapment monitoring is disabled when a RR Preempt sequence starts in order to expedite service of Track Clearance phases.
- Both Track Clearance time and Track Clearance phases must be set or the resulting operation will default to software Flash as soon as all phases have terminated.
- If a Railroad preempt occurs while coordination is active, the local coordinator will continue to run in the background (maintaining cycle position) but updating of the coordination function outputs will be suspended until the preemption sequence ends and the Free After Preempt timer (set at location 365) expires.
- A Railroad preempt will override Manual Control operation until the preemption sequence completes.
- A Railroad preempt will override Emergency Vehicle operation until the preempt sequence completes or until the Railroad preempt sequence begins Limited Service operation.
- Track Clearance phases will not start green until all incompatible overlaps have completely terminated.
- Turning on call light 3 at location 1DB delays the start of Track Clearance green until all overlaps, including compatible ones, have completely terminated.
- After an A.C. power failure, if power is restored to the 170E controller while the preempt input is active (and the controller is configured for RR preempt operation), the program will initiate a software Flash condition immediately on start up. The software Flash will remain in effect until the RR preempt input is removed, at which time a normal railroad exit sequence will take place.
- If a lead phase is flagged for both RR Limited Service and Protected Permissive operation, and its supplemental lag phase is not also flagged for RR Limited Service, a cross street phase must be placed on recall in order to service the lead phase call. An alternative to this is to use the programmable logic to generate a cross street call when the Protected Permissive phase is called during RR Limited Service.

LACO-4E USERS MANUAL
 SECTION 5 - OVERLAPS and PREEMPTION

EMERGENCY VEHICLE

As with Railroad preemption, LACO-4E Emergency Vehicle (EV) preemption logic offers a variety of timers, and phase and control flags that give the user optimum control over EV operation. Minimum EV operation requires that both EV Clearance phases and EV Clearance time be set. If only Clearance phases are set and a preempt input goes ON, call light 9 will flash briefly to indicate that the preempt in insufficiently configured. All other parameters for that preempt will be ignored.

Assuming all parameters are utilized, an EV preempt operation is as follows (see the timing diagram on the next page):

- When an EV input first goes ON, its Minimum timer is checked. If the timer is active, the preempt is ignored.
- If the Minimum timer is zero, the preempt's Clearance phases are checked. If no Clearance phases are set, the preempt is ignored.
- If Clearance phases are set, the preempt's Clearance time is checked. If no Clearance time is set, call light 9 will flash briefly and the preempt will be ignored.
- If the Delay time is set, the preempt will do nothing except decrement the Delay timer until it expires. Call light 9 is illuminated during this time to indicate that a preempt input is active.
- When the Delay timer is zero, Ped Restricts are placed on all phases, and Holds and Calls are placed on all Clearance phases. All Walk intervals are terminated to Flashing Don't Walk immediately. If the EV is flagged to truncate Ped Clearance in EVFLAG (location 390), then all Flashing Don't Walk intervals will be terminated also. The Active timer is checked. While the Active timer is active, no other logic is performed. During this time, any Clearance phases that are Green or go Green will stay Green because of the Holds placed on them. Call light 9 is illuminated during this time to indicate that a preempt input is active.
- When the Active timer is zero, a Force Off is placed on all non-Clearance phases, causing them to terminate after satisfying minimum green intervals. When all Clearance phases are Green and all nonClearance phases are out of service and the preempt input is no longer active, the Clearance interval begins. Green clearance, interval " 9 ", will show in the Front Panel LED display.
- The normal Minimum Green interval times in the background during the Clearance interval. When the Clearance timer expires, if the Minimum Green timer has not expired, the phase will time out its remaining Minimum Green time and show interval " 2 " in the Front Panel LED display. If no Minimum Green time remains, the phase(s) will revert to Normal operation.
- If the Maximum time is set, its timer gets loaded when the Delay timer expires and times concurrently with the Active and Clearance timers. If the preempt sequence has not finished by the time the Maximum timer expires, that preempt sequence will end and the controller will return to Normal operation.

The figure above shows the relationship between the various EV timers with details provided below.

- Interval A = Minimum timer active. All EV logic is ignored. This timer gets set at the beginning of the preempt sequence and also begins timing at the end of the preempt sequence.
- Interval $B=$ Delay timer active. Call light 9 comes on to indicate an active preempt input. No other logic runs during this interval. Once this timer expires, an active preempt sequence is latched until either the Maximum timer expires, or the input goes OFF and the Clearance timer has expired.
- Interval C = Active timer active. Ped Restricts are placed on all phases, Hold and Call are placed on Clearance phases. Any Clearance phases already Green will show interval " 6 " (Hold) on the Front Panel display. Ped Clearance truncation takes place here.
- Interval D = Transition to Clearance phases. Adds a Force Off placed on all non-Clearance phases. Force Off honors phase minimums. If all Clearance phases are in service when the Active timer expires, this interval is skipped and Interval E begins. There is no EV-specific timer associated with this interval.
- Interval E = Clearance timer active. The Clearance timer will not start to decrement until the EV input goes OFF. Clearance phases show interval "9" (Preempt Clearance Green).
- The Maximum time, if set, will time concurrently with the Active and Clearance timers. If the Maximum timer expires before the Clearance timer expires, then the preempt logic will return the intersection to Normal operation until the next preempt input OFF -> ON transition occurs. If the Maximum time is not set (i.e. equals " 000 "), then this Maximum logic is ignored.

Additional Points

- All four EV inputs have equal priority. If any EV is in service and another input goes ON, that input will be overridden until the existing EV finishes service. If multiple EV inputs go ON simultaneously, the lowest numbered input will be serviced.
- If an EV preempt occurs while coordination is active, the Local Coordinator will continue to run in the background (maintaining cycle position) but updating of the coordination function outputs will be suspended until the preemption sequence ends and the Free After Preempt timer expires.
- An EV preempt will override Manual Control operation until the preemption sequence completes.
- A Railroad preempt will override Emergency Vehicle operation until the preempt sequence completes or until the Railroad preempt sequence begins Limited Service operation.
- The Maximum time logic will be ignored if the Maximum timer is set to zero.
- Any EV may be set to link to any other EV.

LACO-4E USERS MANUAL
 SECTION 5 - OVERLAPS and PREEMPTION

MANUAL CONTROL

The Manual Control feature allows on-site override of automatic operation of the intersection controller. Several conditions must be true before Manual Control logic can operate.

- No preemption can be active
- MANCON (location 309) must be set to "1", "2" or "3"
- Both PedA and PedB must be disabled
- The Manual Control Enable input must be ON (Police panel pushbutton inserted in jack)

Once all of these conditions are satisfied, the local coordinator, if active, will be disabled. Depending on the value entered at MANCON, calls will be placed to the controller as follows:

MANCON value	Call logic
000	Manual Control logic disabled: No calls placed
001	Intersection is fully actuated (both vehicle and ped)
002	All permitted phases are placed on recall
003	All permitted phases and enabled peds are placed on recall
Any other value	Same as "003" above

When Manual Control begins, all phases currently green will have a Hold placed on them. Any phases concurrent to the green phases will start service (including ped service, if so configured) and have a Hold placed on them also. Any minimum greens will time out and the active phases will rest in green. The Interval display will show interval " 6 " indicating that the phases are being held. Whenever the Manual Advance input is set ON (Police panel pushbutton is pressed), all green phases that have timed their minimums will be terminated and the next calling phases in ring sequence will be served. All other normal phase logic applies including simultaneous termination at barrier crossings.

Phases can be omitted during Manual Control Operation by selecting the desired phases at location 3C1. The phases selected here will only apply when Manual Control logic is active. Also, lag phasing specific to Manual Control operation can be set at location 3C2. The phases set here will override any other lag-phasing configuration that was in effect at the start of Manual Control operation. This location is subject to the same constraints as Lag Phases Free (location 1FC) and coordination lag phases

When the Manual Control Enable input is OFF, the controller reverts immediately back to normal operation. Any remaining calls generated by the Manual Control logic will remain in place until serviced. If the local coordinator is still active, then it will time out the value entered in Free Time After Preempt (location 365) before updating the coordination function outputs.

If Manual Control is active and a railroad or emergency vehicle service starts, the Manual Control logic will be overridden.

If any phases are selected at either PedA (location 1E6) or PedB (location 1E7), the Manual Control logic will be overridden.
SECTION 6 COORDINATION
GENERAL
LA COUNTY STANDARD COORDINATION
MASTER COORDINATOR
LOCAL COORDINATOR
COORDINATION OUTPUTS
COORDINATION FUNCTIONS
COORDINATION TABLES
ZIP COORDINATION

LACO-4E USERS MANUAL SECTION 6 - COORDINATION

GENERAL

This coordination program provides timing and functions that enable the user to modify the operation of a fully (or semi-) traffic actuated, controlled intersection to time in harmony with system control of a background cycle. Traffic moving through a system of signals will usually be more concentrated in the early portion of the through Green band, while the flow during the later part of the band is usually relative to the demand on the system. For example, assume a system band of 36 seconds. In off-peak periods, perhaps only the first 8 or 10 seconds may have a flow of traffic that might be considered relevant to the system, but during peak periods the flow of traffic may frequently be heavy and continuous over the entire band time.

The coordination program can "guide" the controller into a condition that provides a period of assured Green during the initial portion of the band, leaving the remainder of the band to be self generated by vehicle actuations. If, after the assured Green period, traffic flow is insufficient to continue the Green, the controller will "gap out" and transfer to a conflicting call. In the case of peak traffic demand, the Green will be held following the assured Green period by vehicle actuations until either a gap appears or the phase Force Off is applied. The coordination functions can also be utilized to allow the controller to respond to conflicting phase calls late in the cycle and still return in time for the assured Green.

LA COUNTY STANDARD COORDINATION

In LACO-4E, both the Master and Local Coordinator functions run on all controllers. Controllers are physically configured as either stand-alone or interconnected. For stand-alone configurations, (essentially) there is no "Master" controller. All controllers are "slaves" and the Local Coordinator determines its operation directly from the "local" Master Coordinator (since both share the same memory). A controller that is connected to a Central System is also treated as a stand-alone controller.

For interconnected configurations, the Local Coordinator determines its operation from data received from the "remote" Master Coordinator. This data is sent across twisted pair wire using the RS232 protocol or as a single wire pair that carries an event (start of a phase Green for instance) to trigger an Offset Timing cycle in the slave controller. See section 7 for more information on the wide variety of controller-to-controller communications available.

LACO-4E USERS MANUAL SECTION 6 - COORDINATION

MASTER COORDINATOR

The Master Coordinator has two main functions.

- Determine which plan to command to the remote (slave) controller.
- Manage the Master Cycle Timer (the master clock for all of the coordination timers).

The LACO-4E Master Coordination Map below shows the hierarchy of options that the Master Coordinator uses to determine its plan choice. It can command any of nine plans, Free or Flash.

LACO-4E Master Coordination Map

LOCAL COORDINATOR

The Local coordinator has three main functions:

- Determine the appropriate plan, function or mode to process.
- Update the Local Cycle timer.
- Update the Plan (Dial) outputs.

The primary function of the Local Coordinator is to determine the plan with which to drive the coordination outputs. This plan depends on which of the three local modes of operation is active. The modes are, in order of priority, Local Manual Override mode, TMC Override mode and Time of Day (TOD) mode. There are five sub modes to Local Manual Override: Manual Plan, Slave, Offset Timing (Yield coordination), Free and Flash. Eight coordination tables are provided for fine-tuning of event driven operation; five Time of Day (TOD) tables and three Exception tables (Floating Holidays, Exception Days and Annual Events). Each of the Exception tables is searched once per minute on the minute to determine which TOD table is applicable for the current date. That TOD table is then searched for the most recent time and current Day of Week. Additionally, twelve coordination phase attribute flags (per plan) are available. These are described later in this section.

The Local Coordinator also maintains the Local Cycle timer which controls the setting and clearing of the coordination outputs. The Local Cycle timer lags the Master Cycle timer by the Offset value specified for each plan.

Once the Local Coordinator has determined its command source, it runs the commanded operation setting the coordination outputs (Force Offs, Holds, Ped Restricts and Coordination Calls) as specified in the Timing Sheets.

MODES OF OPERATION

Local Manual Override mode - In this mode, the Local Coordinator ignores what the local Master Coordinator is commanding and instead responds to the value that is entered at location 401. The four sub modes to this mode depend on the value entered here.

1 through 9 (Manual Plan sub mode) - As in TOD mode, the Local Coordinator receives its sync pulse from the local Master Coordinator based on the Plan number entered at location 401.

B (Slave sub mode) - The Local Coordinator receives sync and plan information from an external source via modem. If the master controller is running LACO-4E, then the slave controller should be configured to receive data via modem. If the master controller is running LACO-1R or LACO-3 (or any other vendor's program that sends "standard" 7-wire interconnect), then the data will be received via 7wire interconnect and the cabinet input file must be configured accordingly. Slave sub mode operation is only available in Manual Override mode. If sync is lost for more than 4 seconds, the intersection will run Free until the next sync pulse is sensed. See section 7 for information regarding the format of data that is sent from a LACO-4E Master controller and received by a LACO-4E Slave controller. To remain compatible with pre-LACO-4E programs, only three Dials and one Offset (corresponding to Plans 1, 2 and 3) are supported when receiving 7-Wire information. If Slave sub mode is configured, then LACO-4E requires Plan and Sync pulse information from a source external to the controller.

LACO-4E USERS MANUAL SECTION 6 - COORDINATION

C (Offset Timing sub mode) (or Yield Coordination) - This sub mode uses an event driven form of coordination instead of the familiar time based cycle. The event, which can be the start of (a selectable) phase Yellow or Green, is transmitted via modem. The slave controller checks its Comm Port options to see if any of them are configured. If only the master controller is running LACO-4E, then the event would be sent via the traditional hardwire interconnect (on a single pair) to the non-LACO-4E Slave controller. The user can select any of the nine plans (at location 7AA) to use but if none is selected it will default to plan 3. The selected plan is run to completion (one cycle) at which time the Local Coordinator is turned off (set Free) and the routine waits for the next event. This operation is available in both TOD and Manual Override modes. See section 7 for information on the data that gets passed from a LACO-4E Master controller to a LACO-4E Slave controller. If Offset Timing mode is configured, then the controller requires Sync pulse information from an external source.

E (Free sub mode) - The Local Coordinator releases all control of the intersection. Call light 0 is extinguished. In this mode the Local Cycle timer runs continuously to " 060 " and rolls over to " 000 " again.
TMC Override mode - In this mode, the Local Coordinator ignores the TOD Plan and runs the plan/function downloaded from Central. This can be plans 1-9, Free or Flash. "0" at this location means that Central has commanded the controller to run in TOD Mode. "99" at this location means that the controller has not received an AB341E SetPattern command from Central for more than 255 seconds. LACO-4E treats this the same as " 0 " and sets the Local Coordinator to TOD Mode

Time of Day (TOD) mode - The Local Coordinator receives sync and plan information internally from the local Master Coordinator. Depending on the current TOD table event, the Local Coordinator can run one of nine plans, turn on or off the TOD Output (for driving signs, etc), run in Slave Mode or Offset Timing mode (see below), output software flash or run Free.

The local coordination routine will be overridden when preemption or manual control is in operation or while the "Free After Preempt" timer is active. This user set timer allows the intersection to run free after preemption for up to 255 seconds.

TRANSITION

One most useful features of the LACO-4E Coordination logic is its ability to transition quickly between plan changes. In most cases, the Local Coordination is back in sync within two Master cycles of a plan change. The Local Coordinator is considered to be in transition from the moment a new plan is selected until the dynamic offset time (CurOff, location 40C) equals the programmed offset time (NewOff, location 40D) of the new plan.

LOCAL COORDINATOR PLAN SELECTION HIERARCHY (see next page)

This figure illustrates the logic that the Local Coordinator uses to determine its operating mode and plan. The program first looks at the value in location 401 (Local Manual). If this is a non-zero value, then the Local Coordinator is in Manual Override Mode and that value determines which "sub mode" to run. If location 401 is "000", the Local Coordinator looks at the value in location 404 (TMC Override). If this is a non-zero value, other than " 099 ", the Local Coordinator is in TMC Override Mode and that value determines whether to run a plan, Free or Flash. If this location is " 000 " or " 099 ", the Local Coordinator looks at the value in location 405 (TOD Plan).

COORDINATION OUTPUTS

Call light 0 is a Front Panel indication of the general status of the Local Coordinator. When this light is extinguished, the Local Coordinator is disabled and the intersection is running Free. This is can be confirmed by observing " 014 " at location 403 (Local Plan). When the Local Coordinator is in a valid coordination mode, call light 0 will be ON steady except for the last two seconds of the coordination cycle. During that period it will be extinguished. This represents the current plan's Sync pulse.

Auxiliary output file slot 3 (AUX 3) can be set to output coordination indications. AUX3 Red echoes the Sync pulse (for 7 -wire communication to a Slave controller) and AUX3 Green is used for the TOD Special Function output. This is a time of day output from the event tables. It will be turned ON steady when a TOD table event occurs with an "A" in its Plan/Function column. It will be turned ON flashing when a TOD table event occurs with a "B" in its Plan/Function column. It will be turned OFF when a TOD table event occurs with a "D" in its Plan/Function column. This output will also be automatically echoed to the 4Ped Yellow output as long as no 2-color overlap or Ped A is in use.

Finally there is a Dynamic Coordination display (viewed at location 7FF), which provides the operator a composite status of all four of the coordination functions on the 170E controller Front Panel call lights at the same time. The four functions have a different flash rate to help distinguish them:

- Force Off = solid
- Hold = fast flash
- Ped Restrict = slow flash
- Cocall (Coordination calls) = pulsed

If, for instance, phases 2 and 6 have a (coordination) Hold applied and phases 4 and 8 have a Ped Restrict applied, then call lights 2 and 6 will be ON steady while call lights 4 and 8 will show a slow flashing indication.

COORDINATION FUNCTIONS

	INTERVALS (in seconds)			PLAN 4			
	Plan 4	Plan 5	Plan 6	$\begin{aligned} & \text { Force } \\ & \text { Off } \end{aligned}$	Hold	$\begin{array}{\|c} \text { Ped } \\ \text { Restrict } \end{array}$ Restrict	Call
	1	2	3	4	5	6	7
0							
1							
2							
3							
4							
5							
6							
7							
8							
9							
A							
B							
C							
D							
E							
F							

Coordination functions consist of Force Offs, Holds, Ped Restricts and (coordination) Calls. With careful use of these four parameters and a proper cycle length/offset, the user can achieve the desired Green Band for each intersection. Each plan has an associated Cycle Length entered in row "0" of the respective Plan column (column 1, for Plan 4, in the example shown). Beneath the Cycle Length, time intervals for setting and clearing of the coordination functions are entered. Row zero is also considered "local cycle zero". The value of each row in this column must be greater than in the preceding row and no row may be greater than the Cycle Length (row " 0 ").

Columns 4 through 7 (for Plan 4) are used for setting the desired phase flags for the coordination functions. Any phases may be flagged but only Allowed phases will be recognized. The coordinated phases should be flagged in row "0" of the Force Off column (column 4). At local cycle zero, which occurs at master cycle zero plus the plan's offset value, these phases will be forced off, if they are timing and have satisfied Minimum Greens. The Force Offs will remain in effect until the next interval (corresponding to the next row) is reached. Any phases flagged in this row of the Force Off column will have a Force Off applied to them. All phases not flagged will have the Force Off removed. The same operation is true of the Hold, Ped Restrict and Call functions.

COORDINATION TABLES

Coordination tables come in different varieties depending on what they specify and how they do it. Tables 0 through 4 are the Time of Day (TOD) tables and specify as their output a particular Plan (1-9) or Function (A - F) which is used by the Local Coordinator to decide what plan or functions to output. Tables 5 through 7 determine which of the TOD tables will be in effect.

TOD Tables (tables 0-4)

Each TOD table consists of a list of times of day and a chart of days of the week. The local coordinator uses this data to turn ON/OFF the coordination functions and/or the Special Function outputs. Every minute, on the minute, the LACO-4E program compares its internal clock to the times entered in the Hour:Min column of the table. If a match is found, and the current day of the week has been flagged for that time in the "Sun" through "Sat" columns to the right, then the action called for under the Plan column is taken. For example, it can command the intersection to output program flash (TOD Flash).

Entries in the Hour:Min column of TOD tables may appear redundant at times when actually they are not. For example, it may be desirable to go to Plan 2 at 05:30 if it is a Sunday but to Plan 6 at 05:30 if it is a Monday. Therefore, two lines will list 05:30. One will have an " X " in the Sunday column and will specify a " 2 " in the Plan column. The other will have an " X " in the Monday column and will list a " 6 " in the Plan column.

Another point worth noting is that the times listed in Tables 0-4 need not be in chronological order (even though that is the way they will usually be listed). The program merely scans the whole list for matches and will act on them without reference to where in the list they occurred. This eliminates the need to reenter the entire table in order to add an event in the middle of that table.

Annual Events Table (table 5)

Month/Day column are "starting" dates. Beginning on the date entered, the designated TOD table number will be put into effect each time a day of the week flagged on that line occurs. That table will continue to be implemented for each occurrence of the flagged days until changed by another later date with the same day(s) flagged, or until the end of that calendar year. Entries in Tables 5 through 7 change the "default" table for the flagged days of the week from table 0 to some other TOD table.

As an example, suppose that every Thursday and Friday, during June, July and August, a city sponsors a Farmers' Market that requires a modified traffic coordination, the specifics of which will be entered in table 3. That is, every Thursday and Friday during June, July and August, we want Table 3 to be in effect. On a line in Table 7 enter 06/01 in the Month/Day column; enter a " 3 " in the Table column; and flag columns 5 and 6 (Thursday and Friday) in the day-of-the-week columns. On each Thursday and Friday (until changed by another line), Table 3 will be in effect as the "default" table unless overridden on specific days by Tables 6 and 7 .

On September 1, the city wishes to resume normal patterns of coordination for Thursdays and Fridays so another line is inserted in Table 5 with 09/01 in the Month/Day column, with a " 0 " in the Plan column, and with Thursday and Friday flagged in the day-of-week columns.

Floating Holidays Table (table 6)

This table has the same format as Table 5 but the operation is different. The dates listed in Table 6 are used for those holidays (or events) that don't fall on a fixed date every year or that cause a change in traffic patterns for a time period of more than one day. For example, Thanksgiving is defined as the fourth Thursday in November, but the Friday after Thanksgiving is generally treated as a holiday also (in terms of traffic patterns). To implement Table 1 on this holiday we would list under the Month/Day column, "11/04." We would next put a "1" in the Table column and flag Thursday on that line. The program automatically extends Table 1 operation through the Friday after Thanksgiving as well.

Control defaults to Table 0 unless otherwise directed by another event in Table 6. Events 6-0 through 6-4, listed on the Coordination Tables Timing Sheet, are those used by Los Angeles County. They may be changed to suit the individual agency's needs.

If the "Table" entry is set to "B" the BSP Priority logic will be ignored during that holiday period.

Exception Days Table (table 7)

Table 7 works in a similar manner to Table 6, but it allows other choices on specific days of specific months. If the date entered in the Month/Day column matches a flagged day of the week, control will be forced to the TOD table number listed in the Table column. At the end of that day, control defaults to table 0, unless otherwise directed by another event in Tables 5 through 7.

Events 7-0 through 7-9, listed on the Coordination Tables Timing Sheet, are those used by Los Angeles County. They may be changed to suit the individual agency's needs.

If the "Table" entry is set to "B" the BSP Priority logic will be ignored during that holiday period.

Conflicts Between or Within Tables

In the case when different tables command conflicting actions, the Exception Day Table (Table7) takes priority over the Floating Holiday Table (Table 6) which takes priority over the Annual Event Table (Table 5). Within a given table, if two events direct different actions at the same time, the event closest to the bottom of the table will be implemented.

Additional points

- Table 8 is not used. Data entered in this table's events is ignored.
- Table 9, BSP Table, is described in section 8, Miscellaneous Features.
- Walk and Don't Walk intervals will not be abbreviated by coordination Force Off.
- All preemption modes (including Manual Control) will temporarily suspend Local coordinator control of the intersection. The Master cycle will continue to time in the background, allowing a seamless return to coordination after preemption.
- Queue Clearing Hold will not terminate to Max Extension but will end in the presence of a coordination or preemption Force Off.
- Yellow Clearance, Red Clearance and Red Revert intervals time as normal.

ZIP COORDINATION (ZipCoord)

ZipCoord is a user selectable alternative to the standard LACO-4E coordination function logic. Its name reflects the basic logic that ZipCoord provides. This basic logic is apparent on comparison of the ZipCoord timing (1 timing sheet) versus the standard coordination timing (4 timing sheets). It consists of nine plans where the user can only set a single force off point for each phase and the Hold Release point for the sync phase(s).

The sync phases' Force Off points must be set to the cycle length. These phases will be forced off at local cycle zero. After local cycle zero, a Hold will be placed on these phases until the next local cycle zero or until the Hold Release interval is reached, if set. If the Hold Release is set, it will end the Hold on the sync phases and let them operate off detector actuation so the side street can be serviced early. The side street phases, if called, will time until one of the following occurs:

- Their Max2 time is reached
- They are forced off
- They gap-out

When the sync phases go green again, they will hold in green until the next Hold Release point (local cycle zero). ZipCoord parameters are entered on a separate timing sheet from the standard coordination parameters.

ZipCoord timing occupies the same memory page (Page 4) as the first coordination timing sheet (Coordination 1) of the standard coordination timing. By default, the standard coordination timing is mapped into memory. To enable the ZipCoord memory map, enter any non-zero value at ZipCoord Enable (location 7AD). When this location is set to a non-zero value, all of the standard coordination timing is automatically erased. That is, the user set locations on memory Pages $4,5,6$ and 7 will be set to " 000 ". This corresponds to the Coordination 1, Coordination 2, Coordination 3 and Coordination Attributes timing sheets.

If a value of zero is entered at ZipCoord Enable, the standard coordination memory map will be reenabled. At this point all user-set data will be erased from memory Page 4, which corresponds to the Zip Coordination timing sheet.

Other points to consider for ZipCoord usage:

- ZipCoord only affects how coordination functions are implemented
- Master and Local functionality do not change between ZipCoord and standard coordination
- Coordination Attributes are disabled for ZipCoord.
- Coordination Tables are not affected by changes made to ZipCoord Enable.

ZipCoord uses the Lag Phases (Free) set at location 1FC. If different Lag Phases are desired, then the user must switch to the Standard Coordination.

SECTION 7 COMMUNICATIONS

PEER TO PEER
Transmit Time and Date
Receive Time and Date
Transmit 7-Wire Data (via modem)
Receive 7-Wire Data (via modem)
Transmit Time/Date (AB3418E Master)
Transmit Plan (Discontinued Option)

WWV/GPS
CENTRAL SYSTEMS INTERFACE (AB3418E SLAVE)
BUS SIGNAL PRIORITY (BSP)

LACO-4E USERS MANUAL
 SECTION 7 - COMMUNICATIONS

PEER TO PEER (Controller To Controller)

All controller-to-controller communications complies with the RS232 Serial Communications Specification.
Transmit Time and Date
LACO-4E provides two methods of sending one controller's local time and date to another controller. One uses an L.A. County proprietary message for transmission between County owned controllers. The other is the Caltrans specified AB3418E SetTime message.

Only one Comm Port may be configured for transmitting time and date using the County message. If more than one port is configured, the lowest numbered port will be used and the others will be ignored for this message. To use this LACO-4E proprietary message, determine which port to use and enter " 4 " followed by "E" at locations:

- 191 for the C2S connector
- 192 for the C20S connector
- 193 for the C30S connector
- 194 for the C40S connector

Once the 170E controller is configured, it will send its local time and date out of the configured Comm Port once per minute, on the minute. The time and date are sent in a six-byte string with the entire six-byte string being sent within 1 second. The six bytes sent are:

- Hour
- Minute (seconds are not sent)
- Day of Week
- Month
- Day of Month
- Year

This transmission is suspended whenever a WWV repoll operation is active. Selection of this comm method automatically configures the Comm Port with the following protocol:

- 8 bits
- No parity
- 1 Stop bit

The baud rate is set by software as determined by the port's comm settings. The sending and receiving controllers must be configured likewise for the received data to be recognized. The communications cable should have pins 2 and 3 of the transmitting controller connected to pins 3 and 2 (i.e. reversed) of the receiving controllers.

LACO-4E USERS MANUAL
 SECTION 7 - COMMUNICATIONS

Receive Time and Date

As with transmitting Time and Date, LACO-4E controllers can receive Time and Date using both the AB3418E protocol and the L.A. County proprietary protocol.

Only one Comm Port may be configured for receiving time and date using the County message. If more than one port is configured, the lowest numbered port will be used and the others will be ignored for this message. To use this LACO-4E proprietary message, determine which port to use and enter " 5 " followed by "E" at locations:

- 191 for the C2S connector
- 192 for the C20S connector
- 193 for the C30S connector
- 194 for the C40S connector

Once the 170E controller is configured, it will poll the assigned Comm Port for any activity. This polling is suspended whenever a WWV repoll operation is active. When the 170E controller receives Time and Date data from the sending controller, it automatically updates its local time and date from the received data. The local Real Time Clock's "seconds" location is set to zero. The received data is expected in the following sequence:

- Hour
- Minute
- Day of Week
- Month
- Day of Month
- Year

Selection of this communication method automatically configures the Comm Port with the following protocol:

- 8 bits
- No parity
- 1 Stop bit

The baud rate is set by software as determined by the port's comm settings. The sending and receiving controllers must be configured likewise for the received data to be recognized. The communications cable should have pins 2 and 3 of the transmitting controller connected to pins 3 and 2 (i.e. reversed) of the receiving controllers.

LACO-4E USERS MANUAL
 SECTION 7 - COMMUNICATIONS

Transmit 7-Wire Data (via modem)

Only one Comm Port may be configured for transmitting 7 -wire data. If more than one port is configured, the lowest numbered port will be used and the others will be ignored for this message. To implement LACO-4E proprietary message, determine which port to use and enter " 2 " followed by " E " at locations:

- 191 for the C2S connector
- 192 for the C20S connector
- 193 for the C30S connector
- 194 for the C40S connector

This routine sends the controller's Master Coordinator data, once each second, in 7-Wire format but the data is transmitted via modem instead of the conventional seven conductors carrying 115 vac. First, the desired port must be setup for Comm Option 2. The coordination Master extracts the current plan number and its associated sync pulse status and encodes it into the first six bits of a single byte of data. In addition to this information, two more bits are encoded with Offset Timing pulse and Midnight Sync Pulse information. The Offset Timing pulse bit will be ON when either the phase(s) flagged in Green Offset Sync Pulse (location 1-D-C) are Green or the phases flagged in Yellow Offset Sync Pulse (location 1DD) are Yellow. This bit will be OFF at all other times.

The Midnight Sync Pulse bit will be ON when the 170E controller's Real Time Clock reaches the hour and minute set at MSP Hour (location 7AB) and MSP Minute (location 7AC). This pulse will be ON for only $1 / 10^{\text {th }}$ of a second and OFF at all other times. If a value of " 025 " is entered at MSP Hour, then bit 7 will be ON for $1 / 10^{\text {th }}$ of a second for every second. The data is transmitted in the following format:

MSB	8	7	6	5	4	3	2	1	
	Offset Timing	Midnight Sync Pulse	Free	Dial3 (Plan 3)	Dial2 (Plan 2)	unused	unused	Sync	LSB

Note that if the sending controller is in Local Manual Override mode and commanding the Slave sub mode ("B" at location 401), then only the Offset Timing and Midnight Sync Pulse data will be sent. Note also that, for compatibility with older LACO programs, only Plans 1, 2 or 3 should be configured in the Master Coordinator. The Sync pulse will represent Offset 1 in the receiving controller.

Receive 7-Wire Data (via modem)

Only one Comm Port may be configured for receiving 7 -wire data. If more than one port is configured, the lowest numbered port will be used and the others will be ignored for this message. To implement LACO-4E proprietary message, determine which port to use and enter " 3 " followed by "E" at locations:

- 191 for the C2S connector
- 192 for the C20S connector
- 193 for the C30S connector
- 194 for the C40S connector

Once the 170E controller is configured, it will poll the assigned Comm Port for any activity. When it receives Time and Date data from the sending controller, it automatically updates its local time and date

LACO-4E USERS MANUAL
 SECTION 7 - COMMUNICATIONS

from the received data. Selection of this communication method automatically configures the Comm Port with the following protocol:

- 8 bits
- 1 Stop bit

The baud rate and parity are set by software as determined by the port's comm settings. The sending and receiving controllers must be configured likewise for the received data to be recognized. The communications cable should have pins 2 and 3 of the transmitting controller connected to pins 3 and 2 (i.e. reversed) of the receiving controllers.

MSB	8	7	6	5	4	3	2	1	
	Offset Timing	Midnight Sync Pulse	Free	Dial3 (Plan 3)	Dial2 (Plan 2)	unused	unused	Sync	LSB

Note that if the sending controller is in Local Manual Override mode and commanding the Slave sub mode ("B" at location 401), then only the Offset Timing and Midnight Sync Pulse data will be sent. Note also that, for compatibility with older LACO programs, only Plans 1, 2 or 3 and Offset 1 should be configured in the Local Coordinator. The received Sync pulse will correspond to Offset 1.

Transmit Time/Date (AB3418E Master)

This option allows the 170E controller to send its Time and Date to any controller that supports the AB3418E protocol. Once per minute, the Time and Date are transmitted using the AB3418E SetTime message. This message comes in two variations, broadcast and addressed, but only the broadcast mode is used so that more than one connected controller can be updated with a single message. Data sent includes DOW, mm/dd/yy, hh/mm/ss, and tenths of second.

See the Central Systems Interface (AB3418E Slave) section for details on the SetTime message and AB3418E protocol.

Transmit Plan

This option is has been discontinued.

LACO-4E USERS MANUAL SECTION 7 - COMMUNICATIONS

WWV/GPS

NOTE: All references to WWV in the following section apply to GPS receivers as well.
In order to implement Time Based Coordination an accurate time source must be used to periodically update the 170E controller's Real Time Clock. The Radio Corrected Time Base (RCTB) WWV Clock used by Los Angeles County receives and decodes the WWV/WWVH radio broadcasts transmitted by NIST (National Institute of Standards and Technology, formerly the National Bureau of Standards). It automatically corrects for Leap Year and Daylight Savings Time and, in the event of a power failure, automatically locks on to the WWV broadcast when power is restored.

The 170E controller downloads this extremely accurate time in a number of ways:

- It automatically polls the WWV Clock after a power outage, either long or short.
- It automatically polls the WWV Clock every hour on the hour.
- It can manually poll the WWV Clock via the Front Panel keypad.

Disconnecting the WWV Clock or cable while performing a repoll will abort the repoll process. This is not recommended since it could possibly cause the controller to lock up, requiring a long power down.

Before the 170E controller can utilize the WWV Clock data, the following conditions must be satisfied:

- The WWV Clock hardware must be properly configured
- The desired Comm Port must be configured for WWV - Decide which Comm Port will be used for WWV. Comm Port 1, 2, 3 and 4 are configured at locations 191, 192, 193 and 194, respectively. Enter "1" at the desired location followed by "E". Any one Comm Port can be configured for WWV.
- The WWV Clock cable must be connected to the configured Comm Port - Viewing the 170E controller from the rear, the designations are Comm Port 1 (C2S), Comm Port 2 (C20S), Comm Port 3 (C30S, if installed) and Comm Port 4 (C40S, if installed).
- The WWV Clock must be connected to the cable and have power available to it
- An antenna of the correct type must be connected to the WWV Clock
- The WWV Clock must be "locked on" to the WWV signal - If the WWV Clock has not "locked on" to the WWV signal, then the LACO-4E program will not allow a download. This is to prevent erroneous time from being set.

LACO-4E USERS MANUAL SECTION 7 - COMMUNICATIONS

To manually poll the WWV Clock, access the Time display by pressing "A-C" or "C". Pressing the "E" key at this display will force a manual poll. A manual poll can also be initiated from TxMsg (location 200). At this location, enter " 001 " followed by the "E" key. If the display changes from " 001 " to " 002 " then to " 000 ", then the poll attempt was successful. Any other indication means the poll was unsuccessful. Viewing the call lights at location 0A5 (WWVERR) will provide a probable cause as follows:
$1=$ Not Locked On - Indicates that the WWV Clock has not locked on to the WWV radio signal transmitted by NIST, or the GPS receiver has not yet found at least one satellite to insure correct data, or has not received a usable signal for 5 days,
2 = Cannot Override Central Time/Date - The 170E controller has received a Time/Date update from Central within the last 5 hours. Central Time/Date overrides WWV/GPS Time/Date.
3 = Received Timeout - No data was received from the WWV Clock/GPS receiver within $1 / 2$ second of the last poll.
4 = Bad or unrecognized data received from Clock - Indicates a probable bad ACIA on the 170E controller CPU board. Reconfiguring WWV operation for an unused Comm Port will verify this.
5 = Unused
6 = Unused
7 = No Port Configured - No port has been configured for WWV/GPS operation.
$8=$ Bad or disconnected cable - Indicates that the WWV Clock/GPS cable is not connected to the assigned Comm Port or the cable is faulty.
If the display retains the " 001 " but changes to " 000 " briefly every 2 seconds, then the 170 E controller is not receiving valid data (call lights " 4 " or " 5 "), or the WWV Clock is not "locked on" (call light "1"). In this situation, the 170E controller will continually repoll until either valid data is received from the WWV Clock or the WWV function is removed from the Comm Port option.

If the display retains the "001" but changes to "000" within 1 second, the WWV/GPS logic has not received any data from the WWV/GPS receiver since the last poll. The WWV/GPS receiver should be tested for proper operation (call light " 3 ").

The display changing immediately from " 001 " to " 000 " can be caused by one of three conditions:

- An invalid value was entered at TxMsg (location 200). Only "001" or "002" are valid values.
- No Comm Port is configured for WWV/GPS operation (call light " 7 ").
- The WWV/GPS cable is either faulty or not connected (call light " 8 ").

NOTE: WWV/GPS Time and Date updates will override any Time and Date update from Central as long as the WWV/GPS unit is functional and no errors occur on polling.

LACO-4E USERS MANUAL
 SECTION 7 - COMMUNICATIONS

CENTRAL SYSTEMS INTERFACE (AB3418E SLAVE)

More detailed information on the AB3418E protocol can be found in "Standard Communications Protocol for Traffic Signals in California, Specification and Implementation Requirements" available from the California Dept of Transportation. All AB3418E messages consist of an Opening Flag, Header, Data and Closing Flag. The Opening and Closing Flags are always " $0 \times 7 \mathrm{E}$ ". The Header includes:

- Address byte - This must be in the range of 0-127
- Control byte - 0x03, 0x13 or 0x33 depending on message
- IPI (Initial Protocol Identifier) byte - This is always 0xC0
- Command byte - Depends on message

LACO-4E checks the Control byte of the incoming message from Central. If it is " 0×03 ", then the message is treated as a broadcast message. If it is " 0×13 ", then the message is treated as an addressed message.

When the selected port is configured as an AB3418E Slave, LACO-4E automatically sets the controller's Comm Port protocol to 8 data bits, 1 stop bit and No parity. Any of the controller's Comm Ports may be set to transmit and receive AB3418E protocol but only the first port detected as such will be used. First go to location 190 (System ID) and enter a unique address, from 1 to 63 , for this controller. This identifies the 170E controller to the polling system. To configure the controller's Comm Port 1 to receive AB3418E communication (controller responds to commands from polling system) go to location 191 (Comm Port 1) and enter " 8 " followed by "E". Follow the same steps to configure Comm Port 2 (at location 192), Comm Port 3 (location 193) or Comm Port 4 (location 194).

The following table summarizes the messages currently supported by LACO-4E.

Command				Response			
Control	Type	Bytes	Control	Type	Error	Bytes	
33	81	8	33	C1	E1	28	GETCONTROLLERID 1
$13 / 03$	$92 /$ A2	16	$13 / 03$	D2	F2	$8 / 0$	SETTIME 1
$13 / 03$	$93 /$ A3	9	$13 / 03$	D3	F3	$8 / 0$	SETPATTERN 1
33	84	8	33	C4	E4	11	GETSHORTSTATUS 1
33	85	8	33	C5	E5	68	GETSYSTEMDETECTORDATA 1
33	86	8	33	C6	E6	23	GETSTATUS8 2
33	89	11	33	C9	E9	varies	GETCONTROLLERTIMINGDATA 2
13	99	varies	13	D9	F9	8	SETCONTROLLERTIMINGDATA 2
33	$8 A$	8	33	CA	EA	28	GETSTATUS16 2
33	$8 C$	8	33	CC	EC	40	GETLONGSTATUS8 2
33	87	8	33	C7	E7	12	GETSHORTSTATUSEXTENDED 3

[^0]
LACO-4E USERS MANUAL
 SECTION 7 - COMMUNICATIONS

AB3418E Standard Messages -

GetControllerID - Provides information that identifies the controller to the polling system. Causes the 170E controller to respond to the polling system with the following information:

- Number of data bytes in message response $=\mathbf{1 9}$
- Number of bytes in Manufacturer's ID = 4
- Manufacturer's ID = LACO (Los Angeles County)
- Number of bytes in Model Number = $\mathbf{2}$
- Model Number $=4 \mathrm{E}$ (LACO-4E)
- Number of bytes in protocol version $=\mathbf{1 0}$
- Protocol Version = AB3418E V1

SetTime - This message causes the 170E controller's time and date to change to the time and date sent from the polling system. Data sent includes DOW, mm/dd/yy, hh/mm/ss, and tenths of second. This message comes in two variations, addressed and broadcast. The broadcast variation does not generate a response while the addressed variation does. The broadcast variation is used to update multiple controllers with a single message and its Address byte is ignored.
NOTE: WWV/GPS Time and Date updates will override any Time and Date update from Central as long as the WWV/GPS unit is functional and no errors occur on polling.
SetPattern - This message tells the 170E controller to implement the coordination plan sent from the polling system. This can be plans " 1 " through " 9 ", " 254 " for Flashing Red operation or " 255 " for Free operation. The commanded plan can be observed at location 404 (TMCPLN) and will take affect at the start of the next Master Cycle. This message also comes in two variations, addressed and broadcast. The broadcast variation does not generate a response while the addressed variation does. The broadcast variation is used to update multiple controllers with a single message and its Address byte is ignored.
GetShortStatus - Provides three byte status of the intersection. Causes the 170E controller to respond to the polling system with the following information:

- Current green phases
- Status as follows:

If any preempt input is ON
If the Flash Sense input is ON
If the Local Cycle timer has rolled over since the last poll
If the Manual Control Enable input is ON (pushbutton switch inserted in Police Panel jack)
If location 401 has any non-zero value (Local coordinator is in Manual Override mode)
If any system detector is in an error condition
If any non-critical alarm exists (There are currently no non-critical alarms configured)
If any critical alarm exists

- Current plan

GetSystemDetectorData - This message requests system detector data including:

- Sequence number
- Sample period length
- Number of System Detectors (this is always "28" for LACO-4E)
- Volume/Occupancy/Error Status for each System Detector.

LACO-4E USERS MANUAL SECTION 7 - COMMUNICATIONS

GetStatus8 - Provides fifteen bytes status of the intersection. Causes the 170E controller to respond to the polling system with the same information as GetShortStatus above plus additional status bytes that provide the following information:

- Current green or yellow overlaps (overlaps A through D).
- Active railroad or EV preemption service
- Coordinator-in-transition status
- Ring A and B calling phases
- Ring A and B calling peds
- Ring A and B current phases in service
- Ring A and B current intervals as follows:

$$
\begin{array}{lll}
0 \times 00=\text { Walk } & 0 \times 01=\text { Don't Walk } & 0 \times 02=\text { Min Green } \\
0 \times 03=\text { Queue Green } & 0 \times 04=\text { Added Initial } & 0 \times 05=\text { Passage } / \text { Green Rest } \\
0 \times 06=\text { Hold } & 0 \times 07=\text { Reducing Gap } & 0 \times 08=\text { Red Rest } \\
0 \times 09=\text { Preempt Green } & 0 \times 0 A=\text { not used } & 0 \times 0 B=\text { Red Revert } \\
0 \times 0 C=\text { Gap Termination } & 0 \times 0 D=\text { Max Termination } & 0 \times 0 E=\text { Force Off } \\
0 \times 0 F=\text { Red Clearance } & &
\end{array}
$$

- Presence status for all 28 detectors
- Master Cycle timer
- Local Cycle timer

GetControllerTiming - This message provides the capability of uploading memory locations to Central (or a laptop running Central Systems software). The message specifies a two byte starting address in memory and the number of bytes to upload. Up to 32 bytes of contiguous memory can be retrieved with each message. The 170E controller responds with the requested data. Any location(s) within the 170E controller's memory map, not just Timing, can be retrieved with this message.

SetControllerTiming - This message provides the capability to modify memory locations from Central (or a laptop running Central Systems software). The message specifies a two byte starting address in memory, the number of bytes to modify and the actual data that will replace the 170E controller's data. Up to 16 bytes of contiguous memory can by downloaded from Central. Any location(s) within the 170E controller's memory map, not just Timing, can be modified with this message. This message causes the 170E controller to respond with an "acknowledgement" message only. Extreme care should be used in the Central System software to ensure that no program critical memory is modified.

GetStatus16 - Provides twenty byte status of the intersection. Causes the 170E controller to respond to the polling system with the same information as GetStatus8 above plus additional status bytes that provide the following information:

- Green overlaps (overlaps A through H)
- Yellow overlaps (overlaps A through H)
- Ring C and D calling phases
- Ring C and D calling peds
- Ring C and D current phases in service
- Ring C and D current intervals as follows

GetLongStatus8 - Provides thirty two byte status of the intersection. Causes the 170E controller to respond to the polling system with the same information as GetStatus8 above plus additional status bytes that provide the sample sequence number and Volume/Occupancy/Error status for System Detectors 1-8.

LACO-4E USERS MANUAL
 SECTION 7 - COMMUNICATIONS

LA County Proprietary Messages

GetExtShortStatus - Provides four byte status of the intersection. Causes the 170E controller to respond to the polling system with the same information as GetShortStatus above plus an additional status byte that provides the following information:

1. BADA/BADE flash
2. Controller key press detected
3. Cabinet door open
4. Controller requesting timing download
5. Stuck all red flash
6. Front panel stop time switch ON
7. Police panel door open
8. External stop time input ON

Any LACO-4E memory location is retrievable from the 170E Controller using the GetControllerTiming. Following are several useful examples:

1) Get Input, Output and Coordination Status

Send GetControllerTiming Message as follows:
7E 0533 C0 8903 EF 1F 27 C0 7E
Returns 31 bytes of data from the controller as follows:
03EFh - Echo of Input Port 1 (In1)
03F0h - Echo of Input Port 2 (In2)
03F1h - Echo of Input Port 3 (In3)
03F2h - Echo of Input Port 4 (In4)
03F3h - Echo of Input Port 5 (In5)
03F4h - Echo of Input Port 6 (In6)
03F5h - Echo of Output Port 1 (Out1)
03F6h - Echo of Output Port 2 (Out2)
03F7h - Echo of Output Port 3 (Out3)
03F8h - Echo of Output Port 4 (Out4)
03F9h - Echo of Output Port 5 (Out5)
03FAh - Echo of Output Port 6 (Out6)
03FBh - Echo of Output Port 7 (Out7)
03FCh - Coordination Calls (CoCall)
03FDh - Coordination Ped Restricts (PedRst)
03FEh - Coordination Holds (Hold)
03FFh - Coordination Force Offs (Force1)
0400h - System Manual Plan Override (SysMan)
0401h - Local Manual Plan Override (LocMan)
0402h - Commanded Master Plan (MasPIn)
0403h - Commanded Local Plan (LocPIn)
0404h - Central Master Plan Override (TMCPIn)
0405h - Current Time of Day Table Plan (TODPIn)
0406h - Current Time of Day Special Function Command (TODSpf)
0407h - Current Time of Day Table (TODTbl)
0408h - Minimum Cycle Length (MinCyc) (discard this)
0409h - Maximum Cycle Length (MaxCyc) (discard this)
040Ah - Current Master Cycle Timer (MasCyc)
040Bh - Current Local Cycle Timer (LocCyc)
040Ch - New Offset Time (NewOff)
040Dh - Current Offset Time (CurOff)

2) Get Coordination MOE Data

Send GetControllerTiming Message as follows:
7E 0533 C0 89 1A 0C 1427 C0 7E
Returns 20 bytes of data from the controller as follows:
1A0Ch - Permitted phases (Permit)
1A0Dh - Local plan (LocPIn)
1A0Eh - Last Master Cycle length (LMster)
1A0Fh - Coordination Status Sequence Number
1A10h - Last cycle Coordination split for phase 1
1A11h - Last cycle Coordination split for phase 2
1A12h - Last cycle Coordination split for phase 3
1A13h - Last cycle Coordination split for phase 4
1A14h - Last cycle Coordination split for phase 5
1A15h - Last cycle Coordination split for phase 6
1A16h - Last cycle Coordination split for phase 7
1A17h - Last cycle Coordination split for phase 8
1A18h - Last cycle Coordination green delay for phase 1
1A19h - Last cycle Coordination green delay for phase 2
1A1Ah - Last cycle Coordination green delay for phase 3
1A1Bh - Last cycle Coordination green delay for phase 4
1A1Ch - Last cycle Coordination green delay for phase 5
1A1Dh - Last cycle Coordination green delay for phase 6
1A1Eh - Last cycle Coordination green delay for phase 7
1A1Fh - Last cycle Coordination green delay for phase 8
3) Get Timing Sheet Checksum Data

Send GetControllerTiming Message as follows:
7E 0533 C0 8919601627 C0 7E
Returns 22 bytes of data from the controller as follows:
1960h - Page 0100 Checksum
1962h - Page 0200 Checksum
1964h - Page 0300 Checksum
1966h - Page 0400 Checksum
1968h - Page 0500 Checksum
196Ah - Page 0600 Checksum
196Ch - Page 0700 Checksum
196Eh - Page 1000 Checksum
1970h - Page 1100 Checksum
1972h - Page 1200 Checksum
1974h - Page 1E00 Checksum
4) Get Embedded Date of LACO-4E EPROM

Send GetControllerTiming Message as follows:
7E 0533 C0 8980050327 C0 7E
Returns 3 bytes of data from the controller as follows:
8005h - Month of LACO-4E program
8006h - Day of LACO-4E program
8007h - Year of LACO-4E program

Use of the AB3418E GetControllerTiming message in conjunction with a working knowledge of the LACO-4E memory maps can provide a wealth of useful information to Central.

LACO-4E USERS MANUAL
 SECTION 7 - COMMUNICATIONS

Bus Signal Priority (BSP)

(See section 8 for information on BSP operation)
The BSP protocol is based on the AB3418E protocol specification. More detailed information on the AB3418E protocol can be found in "Standard Communications Protocol for Traffic Signals in California, Specification and Implementation Requirements" available from the California Dept of Transportation.

When the selected port is configured for Bus Signal Priority, LACO-4E automatically sets the 170E controller's Comm Port protocol to 8 data bits, 1 stop bit and No parity. Any of the 170E controller's Comm Ports may be set to transmit and receive Bus Signal Priority but only the first port detected as such will be used. To configure the 170E controller's Comm Port 1 for Bus Signal Priority, go to location 191 (Comm Port 1) and enter " 9 " followed by "E". Follow the same steps to configure Comm Port 2 (at location 192), Comm Port 3 (location 193) or Comm Port 4 (location 194).
The following BSP messages are currently supported by LACO-4E:
GetBSP - This message is 15 bytes long and is sent by an approaching bus. The example below shows the standard GetBSP message format. This message will be sent from the bus to the traffic signal controller for check in and five seconds later as a position update. It will then be sent a third time for the check out message.

Byte	Description
1	Start Flag (always 0x7E)
2	Primary Address
3	Secondary Address
4	City Code
5	Control (always 0x03: send data no response)
6	Initial Protocol Identifier (IPI) (always 0xC3)
7	Command (always 0x85)
8	Data, Protocol Revision
9	Data, MSB of Bus ID
10	Data, LSB of Bus ID
11	Data, Bus Status
	\quad Bit1 N/B Bus direction
	" 2 S/B Bus direction
	" 3 E/B Bus direction
	4 W/B Bus direction
	"5 Position update
	" 7 Check-out
	" 8 Priock-in

LACO-4E USERS MANUAL SECTION 7 - COMMUNICATIONS

SetBSP - This message is sent by the 170E controller shortly after receiving the GetBSP message from an approaching bus. The SetBSP message is identical to the GetBSP message except for the insertion of the "DTGP" byte before the CRC bytes.

The following shows the standard SetBSP message format. This message will be sent from the traffic signal controller to the MTA computer (bus logger) for data collection. See the GetBSP example above for all but the DTGP byte.

Byte	Description
1	Start Flag
2	Primary Address
3	Secondary Address
4	City Code
5	Control
6	Initial Protocol Identifier (IPI)
7	Command
8	Protocol Revision
9	Data, MSB of Bus ID
10	Data, LSB of Bus ID
11	Data, Bus Status
12	Data, Bus ETA
13	Data, DTGP Action
	1 Hold the Green Phase (Bus arrives during green) 2 Early Green Return (Bus arrives when not green) 3 Special Operation (Future; queue jump or skip phase) 4 Demand Override 5 Manual Override 6 Table Override 7 Priority Override 8 Preempt Override
14	CRC High Byte
15	CRC Low Byte
16	End Flag

See Appendix E13 for information on cabling requirements for AB3418E and BSP communications.

SECTION 8 MISCELLANEOUS FEATURES

BUS SIGNAL PRIORITY (BSP)
USER DATA VALIDATION
PROGRAMMABLE LOGIC
MID-BLOCK PED CROSSING
FREEWAY OFF-RAMP RELEASE LOGIC
OUTPUT FILE EDITING
FLASHOUT PROGRAM
REINITIALIZATION
MEMORY MANAGEMENT
TIMING COPYING

LACO-4E USERS MANUAL SECTION 8 - MISCELLANEOUS FEATURES

BUS SIGNAL PRIORITY (BSP)

The Bus Signal Priority logic provides transit buses a priority service over normal vehicular flow when passing through a signalized corridor. In order to accomplish this task, LACO-4E incorporates the AB3418E communications specification and priority logic functions necessary for a transit priority system. While the logic routines in this system give a priority to the transit vehicles, they only aid in the progression of the vehicle and do not guarantee its passage. The purpose of the system is to reduce "Red Time" or the amount of time a bus sits at a red light. See section 7, Communications for information on the BSP protocol.

Highlights of the LACO-4E Bus Signal Priority feature:

- Receives Priority request from the transit bus
- Extracts bus direction information
- Extracts bus Estimated Time of Arrival (ETA)
- Extracts Check-in, Check-out and Position update requests
- Provides a Manual Override
- Provides a Demand Override
- Provides a Time of Day Table Override
- Provides a Priority Override
- Provides a Preempt Override
- Maintains a running average of the queue length on the priority phase per ring
- Maintains the average demand (Green) time for all eight phases
- Determines whether to hold the green or force-off for an early green return
- Sends the "Action Taken" Status to the MTA bus logger
- Works under free and coordinated operation
- Maintains the coordinated cycle
- Aids, but does not guarantee, the passage of the transit vehicle

The BSP logic routine determines what action to take when it receives a transit priority request. The logic can hold the green for the priority phase. However, how long to hold the green must be calculated so as not to overrun the coordinated cycle. The logic can also force a side street termination for an early return to green but the logic must determine how much time can be reduced on the side street without seriously affecting congestion levels. The average queue build up on the priority phase is looked at and affects the side street green time reduction calculation; the larger the queue the more time needs to be subtracted from the side street. The ETA Timer tells the logic when to start the priority action and when to end it if the Checkout message is late or never arrives.

The Override logic disables the BSP logic with any one of the five parameters failing the test. The five parameters are Demand override, Table override, Manual override, Preempt override and Priority routine active override. See section 7 for BSP Protocol definition.

The operator will have a series of locations to set to optimize the performance of the priority routine for each signal location. All user set locations are in the first column of the BSP RAM page (PAGE-1E). Shaded areas on the timing sheet represent observation-only memory locations. Because the BSP RAM page is located in extended memory, the data can be set or read in decimal or binary format making it easier on the user. The decimal data is shown in the Timing window of the display and the binary data is represented in the call active lights. To switch from one mode to the other, simply toggle the Stop Time switch and observe the decimal point in the Timing window. If it is on, the display is in decimal mode. If it is off, the display is in binary mode.

LACO-4E USERS MANUAL SECTION 8 - MISCELLANEOUS FEATURES

Operational Procedures

The operator must enter the user set locations for the BSP routines to run. The operator must select the phase, which will be hosting the priority service calls. Only two phases should be selected, one for each Ring. At the next location, enter any Demand phases the operator wishes to remove from the Split modification logic if their congestion level reaches max. Enter the low order address of the controller. The address can be unique to the BSP communications, as it will not interfere with an existing system. Next, enter the high order address if necessary. Enter the City code, which is actually part of the addressing scheme although it is treated as a separate location. Enter the priority phases in the appropriate next four direction locations. These four locations tell the logic the association between phase and direction of the Bus. If the user is using the hardwired mode of operation, the ETA time must be set in the HWETA location. This number is an estimate of the time it will take the Bus to arrive once it crosses the check in loop. BSPMAN, which is the last location to set, selects the BSP mode. Select the appropriate mode for the operation and the logic will start running.

The logic can be turned off, "Overridden", by three tables. The Floating Holiday table (table 6) and Fixed Holiday table (table 7) are the coordination tables used for Holiday plan selection in LACO-4E. The code of "B" for Bus will set the BSPFLT or BSPFIX locations and tell the logic to ignore all priority requests. The BSP table (table 9) for the BSP is used to configure Table Override. The Hours, Minutes, Day of Week and Direction(s) to override will need to be entered to inhibit the priority request for any given direction when the Local Coordinator is active. Press " 9 " to set table data entry mode then " 9 " to access event 0 of the BSP table. Data for this table is entered in the same format as for the other coordination tables.

Observe Locations

The operator can observe several status locations to aid in trouble shooting or simply to watch the logic routine work. The first location is called ERROR and holds the test results of the incoming BSP message. All of the locations are checked by this logic routine to make sure the message is complete and for the intended controller. This location updates each time a new message is received.. ETATMR, the ETA Timer is also set at the beginning of the priority service and runs to completion or receipt of the check out message. PRIFAZ holds the phase that is requesting priority. DTGP is a very useful location. This dynamic location stores the result of the logic routines.

ETA Timer (location 1E10) - A count down timer for the Estimated Time of Arrival of the bus to the intersection. The location can be periodically updated by the bus in a position update message. The ETA information is used by the logic code to determine the time to start priority service. Set the display to decimal to observe the timer.

DTGP (Decision To Grant Priority) (location 1E11) - This location is the result of the logic decision making code and is the heart of the system. The operator can see what the logic wants the controller to do and observe the action. This location contains eight bits of action code. Set the display for binary mode to view this location.

The first two bits tell the operator which action the logic has selected for this priority request. Bit one is for HOLD the green and Bit two is for an Early Return. These bits may change as the BSP logic continuously selects the best action to take while the ETA Timer counts down or is updated by the Bus en route to the bus stop. The other six bits provide the override status. If any of these bits are set, the priority request was denied and the routine resets and waits for the next check in message. The data bits are:

1. Hold the Green Phase (Bus arrives during green)
2. Early Green Return (Bus arrives when not green)
3. Special Operation (Future; queue jump or skip phase)
4. Demand Override
5. Manual Override
6. Table Override
7. Priority Override
8. Preempt Override

LACO-4E USERS MANUAL SECTION 8 - MISCELLANEOUS FEATURES

Priority Flag (location 1E12) - Contains the direction information of the priority request and tells the logic that a priority request is being serviced and to ignore any additional requests. Set the display for binary mode.

Priority Phase (location 1E13) - Contains the phase information of the priority request and is used in the logic routines for priority phase consideration. Set the display for binary mode.

BSPTOD (location 1E14) - The search result of the BSP Table (table 9). The priority request will be ignored for this direction while the table is active.

BSPFIX (location 1E15) - The search result of the Fixed Holiday Table. This table can inhibit the priority logic for all directions for a given date. The Fixed holiday table is the same one used for coordination and is table 7.

BSPFLT (location 1E16) - The search result of the Floating Holiday Table. This table can inhibit the priority logic for all directions for a date that is not fixed on the calendar. An example of a floating holiday is Labor Day, which is the first Monday in September. The Floating holiday table is the same one used for coordination and is table 6.

BSPDFZ (location 1E17) - The Demand Phase location is the sum of all eight demand phase locations and is used by the override logic to cancel the green time modifications to that phase. This location is compared to the user set location DEMPFZ and only the phases selected for this feature which are in demand override will be excluded from having their green times modified. Observe the data in binary mode.

BSPFZ1-8 (location 1E18 through 1E1F) - The demand phase working locations. The data contained in these locations is dynamic. The demand phase logic looks at how the phase was terminated. If the phase terminated by MAX three consecutive times, the demand phase override flag is set in BSPDPZ above. The flag is cleared if the phase "GAPS" three consecutive times. The flag being set tells the logic that the demand is very heavy for this phase and do not steal any green time from it. Observe these locations in binary mode.

Slop (location 1E20) - A program calculated number which tells the logic how much time could be adjusted in the cycle without seriously affecting coordination. This number has no meaning when the controller is operating in the Free mode. Observe this data in decimal mode.

AQLA (location 1E21) - The running average queue length of Ring A over the last two cycles.
AQLB (location 1E22) - The running average queue length of Ring B over the last two cycles.
BSPRAQ (location 1E23) - Timer for the average queue time of the Ring A priority phases. The queue time is monitored to help calculate bus ETA in the early return to green logic in order to avoid the built up queue of vehicles.

BSPRBQ (location 1E24) - Timer for the average queue time of the Ring B priority phases. The queue time is monitored to help calculate bus ETA in the early return to green logic in order to avoid the built up queue of vehicles.

BSPFTB (location 1E27) - Floating Holiday storage for the "Day after" bit. Allows, for example, the day after Thanksgiving to run in the holiday mode. The display can be in either mode for this location.

BSPDONE (location 1E28) - Contains the phases that had their timing modified by the logic routine. Timing modification can only be done one time for each phase green. If, in the next cycle, the bus has not reached the bus stop and the ETA timer is still running the phase greens can be modified again.

BSPMAX (location 1E29) - Holds the max recall flags for the build call routine. It is used by the logic when the coordination is running free to hold the priority phase green.

CYCNT (location 1E2A) - The projected number of cycles before the bus arrives.
BAICP (location 1E2B) - The projected arrival time within the cycle of the bus

LACO-4E USERS MANUAL
 SECTION 8 - MISCELLANEOUS FEATURES

BMSGERR (location 1E4F) is an observe location that stores the last message status. There are eight bits that will aid the operator in checking the communication system in the field. Routine maintenance should observe this location and note any errors then clear all flags for the next maintenance cycle. This will aid in finding intermittent problems with the communications system. This location should be observed in the binary display mode.

Bits		Definition
$\mathbf{1}$	Bad Opening/Closing Flag	Missing start or end flag
$\mathbf{2}$	Bad Address1	1st Address byte does not match Timing Sheet Primary Address
$\mathbf{3}$	Bad Address 2	2nd Address byte does not match Timing Sheet Secondary Address
$\mathbf{4}$	Bad City	City byte does not match Timing Sheet City Code
$\mathbf{5}$	Bad Control Byte/IPI/Command	Control byte is not equal to 0x03 or IPI byte is not equal to 0xC3 or Message Number byte is not equal to 0x85
$\mathbf{6}$	Bad Revision	Revision Number byte is not equal to 0x01 or 0x02
$\mathbf{7}$	Future use	Computed checksum of message does not match transmitted checksum
$\mathbf{8}$	Bad Checksum	

LACO-4E USERS MANUAL
 SECTION 8 - MISCELLANEOUS FEATURES

USER DATA VALIDATION

LACO-4E provides automatic validation of all the critical data in the program. This data falls into four general categories:

1. Phase Time Parameters

- Minimum Green - If a phase is selected for Permit or Railroad Limited Service, its Minimum Green time will be automatically set to 10 seconds if no other time is set there.
- Yellow Clearance - Yellow Clearance time for all phases must be between 3.0 seconds and 5.0 seconds. If it is less than 3.0 seconds, it will be automatically set to 3.0 seconds. If it is greater than 5.0 seconds, it will automatically be set to 5.0 seconds. If a phase is selected for Yellow Ranging, then its Yellow Clearance time can be set to any value between .0 second and 25.5 seconds.
- Red Revert times - The default time for Red Revert is 2.0 seconds. Any value other than zero can be entered for Red Revert. If zero is entered, it will automatically be changed to 2.0 seconds.
- Main Street phases - At least one phase must be selected as a Main Street phase. If no phase is selected, then phases $1,2,5$ and 6 will automatically be selected.
- Side Street phases - Side street phases are automatically set to the opposite of Main Street phases.
- First phases - First phases must also be selected in Permit phases. All First phases must be able to time concurrently with regards to ring, street, Exclusive phasing and Restricted phasing.
- Yellow Startup phases - Same as First phases.
- Ped phases - Only one phase may be selected for each ped. If more than one phase is selected, only the last selected phase will be saved. If Overlap A / B have parent phases selected, then Ped A / B are disabled. Phases selected will be erased. Only configured peds (i.e. peds with phases assigned) can be selected as STA Mode, Ped Recall or Railroad-Only peds (RRPED).
- Exclusive phases - Only lead phases or lag phases may be selected as Exclusive phases.
- Restricted phases - Restricted phases can only be set for standard quad configurations. Only lead phases or lag phases may be selected as Restricted phases. Restricted phases cannot be selected on the same street with Exclusive phases. If Restricted phases are selected, they will be erased.
- Free Lag phases - If no phases are selected for a quadrant or multiple phases are selected for a quadrant, then only the quadrant's barrier phase will be saved.
- Manual Control Lag phases - Same as Free Lag phases, above

LACO-4E USERS MANUAL
 SECTION 8 - MISCELLANEOUS FEATURES

2. Preempt Parameters

- Railroad Mode Select - Only "01", "02", or "03" are recognized as valid Railroad modes. Any other value will be changed to " 00 ".
- All Red time after RR Flash - The default value is 5.0 seconds. Any value other than zero can be entered. If no value is set, it will automatically be changed to 5.0 seconds.
- EV Clearance phases - EV Clearance phases must also be selected as either Permitted phases or Railroad Limited Service phases (RRBLIM). They must also be able to time concurrently as in First phases, above.
- RR Track Clearance phases - Same as EV Clearance phases, above.
- RR Exit phases - Railroad Exit phases must also be selected as Permitted phases and be able to time concurrently as in First phases, above.
- EV Link - An EV will not be permitted to link to itself. If, for example, EV A Link is set to "001" (for EV A), the location will automatically be changed to " 000 ". Also, any value other than " 001 ", "002", "003" or "004" will be treated as zero.

3. Overlap Parameters

- Yellow Clearance time - Same as phase Yellow Clearance.
- Load Switch assignments - Only 3-color overlaps (C, D, E and F) can have their outputs redirected. A value entered for overlaps A or B will be erased. Only phase load switches ("1" through " 8 ") or ped load switches (" 13 " through " 16 ") can be entered here. Any other value will be erased.
- Yellow Ranging overlaps/Driveway Flash overlaps/Yellow Startup overlaps - Only overlaps A through F (call lights 1 through 6) can be selected. Any other selection (7 or 8) will be erased.

4. Coordination Parameters

- Cycle lengths - Default Cycle lengths for plans 1 through 9 are set to 60 seconds. If zero is entered for any plan's Cycle length, it will be automatically changed to 60 seconds. Any value (other than zero) may be entered here. However, if the Cycle length is less than 10 seconds, the plan will use 60 seconds instead and the value entered here will remain unchanged.
- Max Cycle Length - The Max Cycle length cannot be zero and it must be greater than the Min Cycle length. If either of these two conditions is not met, the value will automatically be changed to 255 seconds.
- Plan Lag phases - Same as Free Lag phases, above.

LACO-4E USERS MANUAL
 SECTION 8 - MISCELLANEOUS FEATURES

PROGRAMMABLE LOGIC

Refer to Appendices A15 (Programmable Logic worksheet), E1 (Input Function Map) and E2 (Output Function Map) for this discussion. This feature is very powerful in that it almost completely eliminates the need for external wiring to achieve special logic operation. Programmable Logic provides the following logic gates and operations:

- Four each 2-input/2-output AND gates
- Four each 2-input/2-output OR gates
- Four each 2-input/2-output Exclusive OR (XOR) gates
- Four each 2-input/2-output Set/Reset (S/R) Latches
- Four each Relay with switched input, and coil controls
- Four each Multifunction Timers
- The bottom output of all gates except the Timer are the complement of the top output

Programmable Logic is implemented in very straightforward manner. Users already familiar with logic operations and basic electrical devices will adapt to this feature very quickly. The key to facilitating this feature is in understanding the mechanism used to connect the 170E controller inputs and outputs to the logic devices. Every input and output in the 170E controller is mapped to a "port". There are eight input ports (Appendix E1) and seven output ports (Appendix E2). Each port is further broken down into bits. A port is one byte long and therefore has eight bits. Appendices E1 and E2 show this port/bit relationship and associate three pieces of information with each one:

1. The LACO-4E default (and, in some cases optional) functions
2. The C1 pin assignment based on the Caltrans 170E controller specification
3. The "logic" pin associated with the port/bit which is used on the Programmable Logic Timing Sheet

Notice that input logic pins are 2-digit numbers and output logic pins are 3-digit numbers. This is a convenient way to separate the inputs from the outputs for both the users and the controller program. For those who may be interested, the logic pin is defined thusly:

$$
\text { Logic pin }=((\text { port number-1 }) * 10)+\text { bit position }
$$

For instance, the EV B input is located in input port 5 (" 5005 " in the hardware address column of Appendix E1) at bit position 6. Hence its logic pin number is:

$$
((5-1) * 10)+6=46
$$

Note that the AUX3 Yellow output, which is located in output port 5 at bit position 6 has the same logic pin number as the EV A input except that it is preceded with a "1", (146).

LACO-4E USERS MANUAL
 SECTION 8 - MISCELLANEOUS FEATURES

Dummy pins are used as a connection mechanism between logic devices. These pins are not used in the 170E controller and have no input or output function. Any pin with a number greater than " 199 " will be treated as a dummy pin. A dummy pin (pin 200 below) must be specified twice. First, it will be used to identify the output of logic device X (the AND gate below) and then it will be used to identify the input of logic device Y (the OR gate below) that is connected to logic device X .

Note: The above is explained in Example A, following the logic gate descriptions.
Gates can be linked together by wrapping an output of one gate to the input of any other gate "below" it (higher memory address). Gates in a column can be linked to any gate in any column, which is to the right of it (higher address). This means that (viewing the Programmable Logic timing sheet) the AND1 outputs can be used as inputs to any other gate on the timing. By contrast, the TIMER4 outputs cannot be used as inputs to any other gate. An output that feeds back to the input of the same gate will be processed in the next $10^{\text {th }} \mathrm{sec}$.

The logic and simplicity of this numbering system will become apparent to the user upon examination of Appendices E1 and E2. Additionally, a real world example is provided on the Programmable Logic Worksheet (Appendix A15). This example and others are explained in detail following the logic device descriptions.

LOGIC DEVICES

AND Gate

In 1	In 2	Out 1	Out 2
0	0	0	1
1	0	0	1
0	1	0	1
1	1	1	0

As long as both inputs are ON, Out1 will be ON and Out2 will be OFF. If either input is OFF, Out1 will be OFF and Out2 will be ON.

OR Gate

In 1	In 2	Out 1	Out 2
0	0	0	1
1	0	1	0
0	1	1	0
1	1	1	0

As long as either input is ON, Out1 will be ON and Out2 will be OFF. When both of the inputs are OFF, Out1 will be OFF and Out2 will be ON.

LACO-4E USERS MANUAL
 SECTION 8 - MISCELLANEOUS FEATURES

XOR (Exclusive Or) Gate

In 1	In 2	Out 1	Out 2
0	0	0	1
1	0	1	0
0	1	1	0
1	1	0	1

As long as both inputs are different (one ON and one OFF), Out1 will be ON and Out2 will be OFF. When both of the inputs are the same (both ON or both OFF), Out1 will be OFF and Out2 will be ON.

Set/Reset Latch

S/R LATCH

There is no truth tale associated with this device. The two outputs are always in the opposite state from one another. The default state for this device has the Q output = 1 (set). Each .1-second the SET and RESET inputs are monitored for change. If both of the inputs are ON together or the RESET input is $O N$ by itself, then the Latch is reset and the Q output $=0$ (clear) while the other output $=1$. If only the SET input is ON, then the Latch will be set. Four entries need to be defined for each S/R Latch block:

- Set - The logic pin of the input or output used to toggle the Latch to its SET state.
- Reset - The logic pin of the input or output used to toggle the Latch to its RESET state.
- \quad Q - The logic pin of the input that is desired to be latched.
- $\bar{Q}-$ The logic pin of the input that is required to always be in the opposite state as the Q pin.

LACO-4E USERS MANUAL
 SECTION 8 - MISCELLANEOUS FEATURES

Relay

There is no truth tale associated with this device. The default state for this device has the normally closed (NC) output connected to the COMMON input. Each . 1 -second the COIL input is monitored for change. If the COIL input is ON , then the COMMON input will be connected to the normally open (NO) output. There are four entries for each Relay block:

- Common - The logic pin of the input to be switched.
- NC - The logic pin of the Normally Closed contact. This would normally be the same as the Common logic pin number but is not restricted to that. This must be an input logic pin.
- NO - The logic pin of the Normally Open contact. This could be, for instance, the input to one of the logic gates (e.g. a Dummy pin) that might invert the Common input state.
- Coil - The logic pin of the input or output which, when ON connects the Common to the Normally Open contact.

LACO-4E USERS MANUAL
 SECTION 8 - MISCELLANEOUS FEATURES

Timer

There is no truth table associated with this device. This logic block is a multipurpose timer that acts as an extension, delay or one-shot timer, which counts in either whole second or .1 second increments. There are four entries for each Timer block:

- Input - The logic pin of the input to be modified by the timer.
- Output - The logic pin of the timer modified input. This would normally the same as the Input logic pin number but is not restricted to that.
- Type - One of six combinations of as indicated below
- " 01 " $=.1$ second Delay timer. Delays input logic until timer expires.
- " 02 " $=.1$ second Extension timer. Extends input logic until timer expires.
- " 03 " = .1 second One Shot timer. Enables input logic until timer expires at which time the input logic is disabled until the input is reactuated.
- " 10 " $=1$ second Delay timer. Delays input logic until timer expires.
- " 20 " $=1$ second Extension timer. Extends input logic until timer expires.
- " 30 " $=1$ second One Shot timer. Enables input logic until timer expires at which time the input logic is disabled until the input is reactuated.
- Time - The duration of the timer. To implement a 6.0 second timer using Types 01,02 or 03 , enter " 60 " at this location (60 times .1 second $=6.0$ seconds). To implement a 6 second timer using Types 10, 20 or 30 , enter " 6 " at this location.

Functional Diagram

Timing Sheet Equivalent

The figures above depict the Timer block. When the controller starts up, the (Timer) location is initialized with the value entered in the Time location. Depending on the value entered in the Type location, the Timer block operates as follows:

- Types 01 and 10 (Delay) - The switch controlled by the (Timer) location will remain open until the timer reaches zero.
- Types 02 and 20 (Extension) - The switch will remain closed until the timer reaches zero.
- Types 03 and 30 (One Shot) - The switch will remain closed until the timer reaches zero and will remain closed until the Input logic pin goes OFF then back ON.

LACO-4E USERS MANUAL
 SECTION 8 - MISCELLANEOUS FEATURES

Examples

Example A - General

This example takes the I3 Upper detector slot input (logic pin 35) and AND's it with the EV A input (logic pin 45). The output of the AND gate is linked to input1 of the OR gate (via dummy pin 71) and is OR'd with the Front Panel Stop Time switch. OR gate output1 then replaces the original I3 Upper detector slot input. Logically, this means that the detector I3U input will only place a call to its assigned phase if:
(((detector I3U is actuated) AND (the EV A input is ON))
OR
(The Front Panel Stop Time switch is ON))
Functionally, this means that phase 2 (the default phase for detector I3U) will be called whenever:

1. The Front Panel Stop Time switch is placed ON OR
2. Detector I3U is actuated AND EV A input in ON (even if EV A is not configured!)

This is admittedly an example with limited application, but it serves to illustrate that the only limitation to this logic feature is the user's imagination. Users are urged to replicate this and the following examples to familiarize themselves with the power of the Programmable Logic feature. To implement the above example, enter the following data:

Location	1280	1281	1290	1282	1283	1292
Data	35	45	200	200	66	35
Function	Det I3U	EV A	Dummy	Dummy	F.P Stop Time	Det I3U

REMINDER - When accessing memory locations with 4 digits, the first key press must be " 8 ".

LACO-4E USERS MANUAL
 SECTION 8 - MISCELLANEOUS FEATURES

Example B - Anti-Backup logic: Phase 1 detector actuation only places a call when phase 6 is not yellow and phase 5 detector actuation only places a call when phase 2 is not yellow

Location	12 A 2	12 B 3	$12 \mathrm{C0}$	12 C 1	12 D 0
Data	114	201	23	201	23
Function	Phase 2 Yellow	Dummy	Det J5	Dummy	Det J5

Location	12 C 2	12 D 3	$12 \mathrm{E0}$	12 E 1	12 FO
Data	134	202	22	202	22
Function	Phase 6 Yellow	Dummy	Det I1	Dummy	Det I1

REMINDER - When accessing memory locations with 4 digits, the first key press must be " 8 ".

Example C - Pulsed Detector Call: One Shot operation turns constant J2 Upper detector actuation into a . 5 second pulsed actuation. The actual .5-second timer can be observed at location 1-2-9-C.

Location	128 A	128 B	129 A	129 B
Data	02	03	02	05
Function	Det J2U	.1 sec One Shot	Det J2U	.5 sec

REMINDER - When accessing memory locations with 4 digits, the first key press must be " 8 ".

LACO-4E USERS MANUAL
 SECTION 8 - MISCELLANEOUS FEATURES

Example D - Left Turn Arrow comes on (Protected movement of Protected/Permissive Left Turn gets called) only during Railroad preempt. An actuation on input I5 (phase 3 detector) gets transferred to the J6 Upper input (phase 8 detector) during normal operation. When the Railroad B input is active, the I5 actuation gets transferred to 15 (itself) and phase 3 gets called resulting in a Protected left turn arrow. Notice that the Railroad B input is inverted before being used as the Relay coil control. This is because LACO-4E uses negative logic when monitoring the Railroad inputs. That is, when the input goes OFF, the preemptor logic sees it as a TRUE input and begins a preemption sequence. However, this logic translation is accomplished within the preemption module. The Programmable Logic module only knows input ON or OFF so the inverter is added to compensate for that fact.

Location	12C3	12D3	12E8	12E9	12F8	12F9
Data	16	203	24	203	04	24
Function	RRB	Dummy	Det I5	Dummy	Det J6U	Det I5

REMINDER - When accessing memory locations with 4 digits, the first key press must be " 8 ".

LACO-4E USERS MANUAL
 SECTION 8 - MISCELLANEOUS FEATURES

MID-BLOCK PED CROSSING

As the name implies, this feature sets up field indications for a Pedestrian crossing that is not located at an intersection. To implement this feature, turn on call light 1 at User Flag (location 1DB). This feature requires that phase 2 and/or 6 be used to drive the vehicle indication and phase 4 is used to drive the ped indication. Operation is the same as a normal intersection except that the vehicle head flashes its Red ball when the ped is timing its Flashing Don't Walk and/or its Yellow Clearance intervals. It is common to select phase 4 as Yellow Ranging (location 1DE) so that the phase 4 Yellow Clearance can be set to 0 seconds. This way, only the ped intervals will time. An additional all-Red time may be added, between the end of Flashing Don't Walk and the start of the vehicle phase Green, by setting the desired time in the phase 4 Red Clearance.

FREEWAY OFF-RAMP RELEASE LOGIC

One of the primary reasons that state agencies cite for not relinquishing control of a freeway offramp to a local agency is that there is no provision in the local agency's controller firmware to prevent the off-ramp from backing up onto the freeway. LACO-4E has a user selectable feature that does just that. When enabled, the off-ramp's advance detector is continuously monitored for actuation. When this occurs, if the off-ramp phase is red, and either of phase 2 and phase 6 are in service, the program clears all coordination holds and zeros out both rings' Max Green timers. This will cause phases 2 and 6 to terminate (max out) which allows the off-ramp phase to service sooner than it would without the logic.
Configure for Freeway Off-ramp Anti-Backup logic as follows:

- Set location 1DB (User Flags) call light 7 to ON. This enables the logic.
- Select the desired off-ramp phase in location 2BB (detector I8). The default is phase 4.
- Set selected detector's delay time (location 21B). This should be set to a value that will reduce false "backup" indications.

LACO-4E USERS MANUAL
 SECTION 8 - MISCELLANEOUS FEATURES

OUTPUT FILE EDITING

(See figure on next page)

This feature is ideal for performing a Conflict Monitor test while the controller is installed in a cabinet or in a shop/lab environment. It allows the technician to turn ON or OFF (in any combination) each of the fifty-six 170E controller outputs (36 output file, 18 aux file, Detector Reset and the WatchDog Timer). The table on the next page provides information that maps the field outputs to the editable buffers. The 170E controller's output buffers are located on RAM page 00 . This RAM page is write protected to protect the integrity of the program, therefore the RAM page 00 buffers are copied to RAM page 19 whenever the Front Panel (FP) Stop Time switch is placed ON, and the output modification takes place on that page only. The RAM page 00 buffers are never modified.

Use of this feature requires that data be displayed in Flag Display mode of the Extended Memory Display (See section 2). In this display, every time the FP Stop Time switch is set to ON, the display mode toggles between Decimal Display mode and Flag Display mode. When the extended memory location is first accessed, the display mode defaults to Flag Display mode and data is indicated in the call lights (in hexadecimal format). To avoid confusion, when using this feature, always set the FP Stop Time switch to ON first. Then access the desired editable output buffer. This way the FP display will always be in the correct display mode.

Output states should not be tampered with during normal operation, so this feature requires some deliberate action in order to avoid accidental activation:

1. The Front Panel (FP) Stop Time switch must be ON
2. The LED Display must be showing locations 1980 through 1986

While both of these conditions are TRUE, the field indications are controlled by the Front Panel keypad. If either condition is False, field indications are driven by the LACO-4E Signals logic.

First set the FP Stop Time switch to ON. Then access the desired editable output buffer (locations 1980 through 1986) by pressing 8-1-9-8-x, where "x" corresponds to buffers (ports) 0 through 6 . Next, using the table on the following page as a reference, press any of keys " 1 " through " 8 " to toggle the state of that call light (bit). The corresponding indication wired to that port/bit combination will go ON/OFF each time the key is pressed. The WatchDog timer can be turned ON/OFF but it is updated every .1 second by the program logic to prevent the CMU (if connected) from triggering a WatchDog failure.

Location (Output Port)	Call/Active Light (Bit)	Function	Location (Output Port)	Call/Active Light (Bit)	Function
$\begin{gathered} 1980 \\ (\text { OUT1) } \end{gathered}$	1	4Ped Don't Walk	$\begin{gathered} 1981 \\ \text { (OUT2) } \end{gathered}$	1	2Ped Don't Walk
	2	4Ped Walk		2	2Ped Walk
	3	Phase 4 Red		3	Phase 2 Red
	4	Phase 4 Yel		4	Phase 2 Yel
	5	Phase 4 Grn		5	Phase 2 Grn
	6	Phase 3 Red		6	Phase 1 Red
	7	Phase 3 Yel		7	Phase 1 Yel
	8	Phase 3 Grn		8	Phase 1 Grn
$\begin{gathered} 1982 \\ \text { (OUT3) } \end{gathered}$	1	8Ped Don't Walk	$\begin{gathered} 1983 \\ (\text { OUT4) } \end{gathered}$	1	6Ped Don't Walk
	2	8Ped Walk		2	6Ped Walk
	3	Phase 8 Red		3	Phase 6 Red
	4	Phase 8 Yel		4	Phase 6 Yel
	5	Phase 8 Grn		5	Phase 6 Grn
	6	Phase 7 Red		6	Phase 5 Red
	7	Phase 7 Yel		7	Phase 5 Yel
	8	Phase 7 Grn		8	Phase 5 Grn
$\begin{gathered} 1984 \\ \text { (OUT5) } \end{gathered}$	1	Overlap A Grn	$\begin{gathered} 1985 \\ \text { (OUT6) } \end{gathered}$	1	Aux 6 Red (Free)
	2	Overlap B Grn		2	Aux 6 Grn (Plan3)
	3	Overlap A Yel		3	Aux 5 Red (Olp F Red)
	4	Overlap B Yel		4	Aux 5 Yel (Olp F Yel)
	5	Aux 6 Yel (Plan2)		5	Aux 5 Grn (Olp F Grn)
	6	Aux 3 Yel (Preempt)		6	Aux 4 Red (Olp E Red)
	7	Detector Reset		7	Aux 4 Yel (Olp E Yel)
	8	Watch Dog Timer		8	Aux 4 Grn (Olp E Grn)
$\begin{gathered} 1986 \\ \text { (OUT7) } \end{gathered}$	1	Aux 3 Red (Sync)			
	2	Aux 3 Grn (SpecIFunc)			
	3	Aux 2 Red (Olp D Red)			
	4	Aux 2 Yel (Olp D Yel)			
	5	Aux 2 Grn (Olp D Grn)			
	6	Aux 1 Red (Olp C Red)			
	7	Aux 1 Yel (Olp C Yel)			
	8	Aux 1 Grn (Olp C Grn)			

Output Editing Map

LACO-4E USERS MANUAL SECTION 8 - MISCELLANEOUS FEATURES

FLASHOUT PROGRAM

LACO-4E comes with an integrated Intersection Flashout Routine. This routine allows maintenance personnel to verify cabinet-to-field wiring by turning on individual load switch outputs.

To run the Flashout program, the 170E controller must be restarted. The cabinet should be in maintenance flash prior to starting the controller. Place the Front Panel Stop Time switch to the ON position and, while holding down the "F" key, turn the 170E controller power switch ON. The Flashout program starts up in Flash mode (software flash) and the 170E controller Front Panel displays the following:

- Call lights $0-4$ count to 1 second in .1 second intervals
- Call lights 5-9 are extinguished
- Phase digit of the LED display shows 0
- Interval digit of the LED display shows "F" alternating with "b" every half second
- Timing digits of the LED display show "1010" alternating with "0101" every half second
- Output File phase load switches showing Red flash
- Output File ped load switches Dark
- Aux Output File load switches $1,2,4$ and 5 (Overlaps C, D, E and F) showing Red Flash
- Aux Output File load switches 3 and 6 Dark

The Front Panel Stop Time switch toggles the Red flash operation. In the ON position, the "vehicle" load switch Red outputs flash once per second while all other outputs, except the one under test, remain dark. In the OFF position, all outputs except the one under test are. The keyboard is used to select the phase (signal head) and interval (color). Press " 1 " through " 8 " to select the signal heads wired to phases 1 through 8 and observe that the Phase digit on the Front Panel display changes to the selected phase. Press "A" for Red, "B" for Yellow, "C" for Green, "D" for ped Don't Walk, or "E" for ped Walk. Observe that the interval digit on the Front Panel display changes to the selected interval. Pressing the " F " key toggles the output state of the selected phase and interval, either solid ON or .1 second ON followed by 1.9 seconds OFF. If a Red output is selected while in Red flash operation, that Red output will be either be solid ON or 1.5 seconds ON followed by .5 seconds OFF.

Pressing " 9 " enables testing of the unused ped Yellow outputs which normally drive the 2-color overlap indications. Press "C" to test 2Ped Yellow (overlap A Green), "E" to test 4Ped Yellow (overlap B green), "B" to test 6Ped Yellow or "D" to test 8Ped Yellow.

The Flash mode is used for testing the intersection indications when the intersection must be in flashing operation (for instance if traffic is present). This mode allows the operator to momentarily display an output for .1 second every two seconds, which would be too fast to confuse motorists but slow enough for the technician to see. To toggle the Flash mode, press the "F" key. Observe that the interval digit is either solid (indicating non-flash mode) or alternating between the color selection ("A" through " E ") and " F " (indicating Flash mode).

To test the auxiliary output file, hold down the "A" key and perform a short power down restart while in the Flashout program. The phase digit will alternate between the selected aux file slot and "A". The aux file slots are numbered 1 through 6 . As with the output file above, select the slot to be tested then select the output to test (Red, Yellow or Green) by pressing the "A", "B" or "C" key. All other operation is identical to the output file operation described above except the "D" and " E " keys extinguish all outputs.

To change back to testing the output file, simply perform another short power down. To exit out of the Flashout program, perform a long power down of the 170E controller. It will restart in LACO-4E with the last timing that was entered.

LACO-4E USERS MANUAL SECTION 8 - MISCELLANEOUS FEATURES

REINITIALIZATION

Method 1

Set location 10A = "888". CAUTION: THIS MUST NOT BE DONE WHILE THE INTERSECTION IS ON AUTOMATIC! This will cause the program to clear all memory locations and load default timing from the EPROM. The program will set the outputs all Red and the 170E controller display will show "0808". Backup Timing is reset with the same data. Permitted Phases (location 1F0) is set to 0, as are all Phase Intervals. The default timing is as follows.

Location	Function	Value
1 E 0	Main Street Phases	$1,2,5,6$
1 E 1	Side Street Phases	$3,4,7,8$
10 E	Stuck All Red Fail Delay Time	03.0 seconds
10 F	Red Revert Time	02.0 seconds
11 E	Phase 1 Yellow Clearance	05.0 seconds
12 E	Phase 2 Yellow Clearance	05.0 seconds
13 E	Phase 3 Yellow Clearance	05.0 seconds
14 E	Phase 4 Yellow Clearance	05.0 seconds
15 E	Phase 5 Yellow Clearance	05.0 seconds
16 E	Phase 6 Yellow Clearance	05.0 seconds
17 E	Phase 7 Yellow Clearance	05.0 seconds
18 E	Phase 8 Yellow Clearance	05.0 seconds
400	System Manual	014
401	Local Manual	014
409	Maximum Cycle Length	255 seconds
104	Program Number	004
	All other Timing Sheet locations are set to 000.	

Timing can now be reentered from scratch.
Note: Communications parameters are not affected by reinitialization. This allows continuous connection to Central during the operation while still maintaining communications with the 170E controller.

Method 2

Set location 104 to "000." This method can be used safely while the signal is in automatic. The program will Force Off all phases and peds, allowing Minimums (Walk, Flashing Don't Walk, Minimum Green) to time out. When the intersection is all red, the 170E controller will output software flash, the Base Display will show "BADA," and the WatchDog output will be disabled causing CMU hardware flash. At this point, the cabinet Maintenance Flash switch should be placed "ON".

Placing the Front Panel Stop Time switch to "ON" will cause the 170E controller to attempt to reinitialize from Backup memory. If the Backup timing is for a LACO-4E program, (and the data checksum is correct) the data will be downloaded and the 170E controller will restart with all phases and peds on a one-time recall. If the Backup timing is for a non-LACO-4E program, the 170E controller will load EPROM default data as in Method 1. If it is LACO-4E timing data, but the data checksum is wrong, the 170E controller will show "BADD" and continue in software flash. At this point the operator can set location 10A to " 171 " to force a download from Backup Timing. In this case, all timing should be verified since the checksum mismatch indicates that some data corruption has probably occurred. A successful download will be indicated by a Long Power Down startup.

LACO-4E USERS MANUAL
 SECTION 8 - MISCELLANEOUS FEATURES

MEMORY MANAGEMENT

LACO-4E offers a variety of "memory management shortcuts" that fall into two categories; Memory erasure/initialization and Signal Timing saving/restoration. These functions are initiated from location 10A. The different codes that can be entered at location 10A and the resulting operations are as follows:

- 111 - All user-entered data on RAM Page 01 is cleared. All data entered on the Phase Timing and Configuration timing sheets will be set to zero (erased).
- 222 - All user-entered data on RAM Page 02 is cleared. All data entered on the Detector timing sheet will be set to zero (erased).
- 333 - All user-entered data on RAM Page 03 is cleared. All data entered on the Overlap and Preemption timing sheets will be set to zero (erased).
- 444 - All user-entered data on RAM Page 04 is cleared. All data entered on Zip Coordination and Coordination 1 timing sheets will be set to zero (erased).
- 555 - All user-entered data on RAM Page 05 is cleared. All data entered on the Coordination 2 timing sheet will be set to zero (erased).
- 666 - All user-entered data on RAM Page 06 is cleared. All data entered on the Coordination 3 timing sheet will be set to zero (erased).
- 777 - All user-entered data on RAM Page 07 is cleared. All data entered on the Coordination Attributes timing sheet will be set to zero (erased).
- 888 - All user-entered data (except Coordination tables) is cleared. Signal timing is reinitialized from EPROM defaults. This data is also copied to Backup memory.
- 999 - All Coordination tables are cleared. Tables 6 and 7 are initialized to L.A. County defaults.
- 255 - Clears All Programmable Logic.
- 071 - Copies all user-entered data to the 7000h NOVRAM.
- 170 - Restores signal timing that was saved to 7000h NOVRAM back to CPU RAM. Assumes that the saved data checksum is valid. If checksum is not valid, display shows "BADD" (BAD Data). Use "171" (see below) to override the "BADD" result.
- 171-Overrides 7000h data checksum test and restores signal timing that was saved to 7000h NOVRAM back to CPU RAM. USE WITH CAUTION! An invalid data checksum indicates possible corrupted data. Signal timing should be thoroughly checked after this option is invoked. The stored data must be from LACO-4E timing for this operation to be successful.
- 123 - Initializes signal timing from 7000h NOVRAM unconditionally. USE WITH EXTREME CAUTION! Program module may contain timing from a non-LACO-4E program!
- 321 - Requests full timing sheet database download from Central. This causes the Central System to initiate a full timing download to the 170E Controller's Backup memory. After the last timing data is sent, Central sends a "commit" byte ($0 x A A$ to location 10A) to force a transfer of Backup memory to Dynamic memory.

LACO-4E USERS MANUAL
 SECTION 8 - MISCELLANEOUS FEATURES

TIMING COPYING

LACO-4E allows the user to copy both phase timing (from phase to phase) and coordination timing (from plan to plan). Both operations use the same two memory locations to initiate the data transfer. The Source phase/plan should be entered at CPYFRM (location 100) and the Destination phase/plan is entered at CPYTO (location 101). These are both decimal type data and the "E" key must be pressed after each entry. For phase copying, simply enter the Source and Destination phase numbers (1 through 8). For plan copying, enter the plan number preceded by a "1" for both the Source and Destination plan numbers (1 through 9). That is, Plan1 = 11, Plan2 = 12, etc. The program knows whether Zip Coord or Standard coordination is being used and copies the appropriate data automatically. Both Source and Destination locations must be valid and compatible. The program will not allow a phase-to-plan copy or vice versa. A successful copy is indicated by the Destination location being reset to zero.

When the phase copy operation is invoked, all sixteen rows of the Source phase timing column are copied to the Destination phase timing column. When the plan copy operation is invoked, one of two sequences takes place depending on the type of coordination in effect.

1. For Zip Coord, all eleven rows of the Source plan column are copied to the Destination plan column.
2. For Standard Coordination, all sixteen rows of six columns of data are copied:

- The Interval column of the Destination plan
- The four Coordination Function Flag columns of the Destination plan
- The Coordination Attributes column of the Destination plan

For most intersections, all of the even phase numbers have similar if not identical data as do all of the odd phases. With this feature, one would first enter the timing for Phase 1, and then set location 100 to " 001 ". Next, set location 101 to " 003 " and press " E ". This will copy the phase 1 data to the phase 3 column. Then set location 101 to " 005 " followed by " E ", and then " 007 " followed by " E " to copy the remaining odd phases. Repeat that process, first setting the phase 2 timing and then copying that data to phases 4,6 and 8.

This feature is even more of a convenience when entering Standard coordination data since six columns worth of data must be entered for each plan. By first setting the plan with the most common data, the remaining plans, as many as 768 locations (6 columns for each of 8 plans) can be populated quickly with approximate timing and then individual locations can be modified as needed.

LACO-4E USERS MANUAL APPENDICES

Appendix A - Timing Sheets
Appendix B - Feedback Forms
Appendix C - Glossary of Terms and Acronyms
Appendix D - Timing Sheet Conversions
Appendix E - I/O Mappings
Appendix F - RAM Maps
Appendix G - Checksum Maps
Appendix H - Troubleshooting Guide

Timing Sheets

A1. Phase Timing

A2. Configuration
A3. Detectors
A4. System Detectors
A5. Overlaps
A6. Preemption
A7. Bus Signal Priority (BSP)
A8. Zip Coordination
A9. Coordination 1
A10. Coordination 2
A11. Coordination 3
A12. Coordination Attributes
A13. Coordination Tables
A14. Programmable Logic

Information Sheets
A15. Programmable Logic Worksheet
A16. Setting The Real Time Clock
A17. Maintenance Information Sheets 1-5
\qquad of \qquad DEPARTMENT OF PUBLIC WORKS TRAFFIC AND LIGHTING DIVISION TRAFFIC SIGNAL TIMING

INTERSECTION :

Date Requested: Date Completed: \qquad
$B y$:
$B y:$ \qquad

Phase

Keystrokes: 1 + Phase + Interval	Phase								
Interval		1	2	3	4	5	6	7	8
Walk	0								
Flashing Don't Walk	1								
Minimum Green	2								
Queue Maximum	3								
Added Green per Actuation	4								
Vehicle Extension	5								
Time Before Reduction	6								
Minimum Gap	7								
Max Green 1 (Free)	8								
Max Green 2 (Coordination)	9								
Max Added Green	A								
unused	B								
unused	C								
Time to Reduce	D								
Yellow Clearance	E								
Red Clearance	F								

MISCELLANEOUS TIMERS		
Timer	Location	
Red Rest Delay Time	106	
Green Rest Delay Time	107	
Stuck All Red Fail Delay Time	10E	
Red Revert Time	10F	

NOTES:

\qquad of \qquad TRAFFIC SIGNAL TIMING

INTERSECTION : \qquad Date Requested: Date Completed: \qquad
$B y:$ $B y:$

PHASE FUNCTION FLAGS										
Keystrokes: 1 + F + row		1	2			4	5	6	7	8
Permitted Phases	0									
Red Lock	1									
Red and Yellow Lock	2									
Minimum Vehicle Recall	3									
Maximum Vehicle Recall	4									
Rest In Green	5									
Rest In Red	6									
Barrier Recall	7									
Double Entry	8									
Exclusive Phases	9									
Restricted Phases	A									
Prot/Perm Left Turn	B									
Lag Phases (Free)	C									
First Phases (after startup)	D									
Yellow Startup Phases	E									
Yellow Startup Overlaps	F									

STREET CONFIGURATION FLAGS										
Keystrokes: 1 + E + row		1	2	3	4			6	7	8
Main Street Phases	0									
Side Street Phases	1									
2 Ped Load Switch	2									
4 Ped Load Switch	3									
6 Ped Load Switch	4									
8 Ped Load Switch	5									
Ped A Load Switch	6									
Ped B Load Switch	7									
Ped Recall	8									
STA Mode	9									
unused	A									
unused	B									
unused	C									
Driveway Flash	D									
2 Head Driveway Flash	E									
Overlap Driveway Flash	F									

MISCELLANEOUS FLAGS										
Keystrokes: 1 + D + row		1	2	3	4	5		6	7	8
unused	0									
Assoc. Phase Recall - 1	1									
Assoc. Phase Recall - 2	2									
Assoc. Phase Recall - 3	3									
Assoc. Phase Recall - 4	4									
Assoc. Phase Recall - 5	5									
Assoc. Phase Recall - 6	6									
Assoc. Phase Recall - 7	7									
Assoc. Phase Recall - 8	8									
Yellow Calling Phases	9									
Yellow Phases Called	A									
User Flags	B									
Green Offset Sync Pulse	C									
Yellow Offset Sync Pulse	D									
Yellow Ranging Phase	E									
Yellow Ranging Overlap	F									

$\begin{gathered} \hline \hline \text { COMMUNICATIONS } \\ \text { OPTIONS } \\ \hline \end{gathered}$			System ID = 1 to 255							
			Port Mode Options 1 - WWV 2 - Transmit 7 Wire 3 - Receive 7 Wire 4 - Transmit Time/Date 5 - Receive Time/Date 6 - Transmit Plan (not used) 7 - AB3418 Master 8 - AB3418 Slave 9 - Bus Signal Priority							
System ID	190									
Port 1 Mode	191									
Port 2 Mode	192									
Port 3 Mode	193									
Port 4 Mode	194									
		1	2	3	4	5	6	7	8	
Port 1 Baud	1 Co									
Port 2 Baud	1C1									
Port 3 Baud	1C2									
Port 4 Baud	1C3									
Port 1 Parity	1C4									
Port 2 Parity	1C5									
Port 3 Parity	1C6									
Port 4 Parity	1C7									
Baud Rate:$1-115.2 \mathrm{~K}$ $2-57.6 \mathrm{~K}$ $3-38.4 \mathrm{~K}$ $4-19.2 \mathrm{~K}$ $5-9600$ $6-4800$ $7-2400$ $8-1200$			Parity: 0-No Parity 1 - Odd Parity 2 - Even Parity							

Recall Type Options (309)

$00=$ Manual Control Disabled
01 = Fully Actuated
02 = Vehicle Recall Only
$03=$ Ped and Vehicle Recall

User Flag Options (1DB)

1. Enable Mid-Block Ped Crossing logic
2. Modify Main Street Phases (1E0)
3. Delay RR/EV Clearance until all overlaps finish terminating
4. Modified Barrier Crossing (Ignore True Max)
5. Disable Daylight Savings Time Update
6. Disable Ped Recycle logic for STA Mode And Ped Recall phases
7. Enable Freeway Off-Ramp Anti-Backup logic
8. Ignore Stuck-All-Red Failure

INTERSECTION :
T.S. No.:

Date Requested: Date Completed:
$B y$:
$B y:$

			$\begin{array}{\|c\|} \hline \text { Filel } \\ \text { Slot/ } \\ \text { Channel } \end{array}$	Delay Code		Extended Call		Phase Flags								Attribute Flags							
App	Lanes	Description				Code	Seconds	Code	1	23	34	45	5	7	8	Code	12	2	3	5	6	7	8
			I1U																				
			I1L	210		230		2B0								2D0							
			12 U	211		231		2B1								2D1							
			12L	212		232		2B2								2D2							
			I3U	213		233		2B3								2D3							
			13L	214		234		2B4								2D4							
			14U																				
			14L	215		235		2B5								2D5							
			15U																				
			15L	216		236		2B6								2D6							
			16U	217		237		2B7								2D7							
			16L	218		238		2B8								2D8							
			17 U	219		239		2B9								2D9							
			17L	21A		23A		2BA								2DA							
			18U																				
			18L	21B		23B		2BB								2DB							
			190	21C		23C		2BC								2DC							
			19L	21D		23D		2BD								2DD							
			J1U																				
			J1L	220		240		2 CO								2E0							
			J2U	221		241		2C1								2E1							
			J2L	222		242		2C2								2E2							
			J3U	223		243		2C3								2E3							
			J3L	224		244		2C4								2E4							
			J4U	225		245		2 C 5								2E5							
			J4L																				
			J5U	226		246		$2 \mathrm{C6}$								2E6							
			J5L																				
			J6U	227		247		2C7								2E7							
			J6L	228		248		2C8								2E8							
			J7U	229		249		2C9								2E9							
			J7L	22A		24A		2CA								2EA							
			J8U																				
			J8L	22B		24B		2CB								2EB							
			J9U	22C		24C		2CC								2EC							
			J9L	22D		24D		2CD								2ED							

REMARKS:
DETECTOR ATTRIBUTES

DETECTOR ATTRIBUTES	
FLAG 1 - System Detector	FLAG 5 - Queue Clearing
FLAG 2 Red \& Yellow Lock	FLAG 6 - Non-Counting
FLAG 3 - Yellow Disconnect	FLAG 7 - Special Delay Option 1
FLAG 4 - Red Calling Only	FLAG 8 - Special Delay Option 2

Note: Shaded Phase Flags call by default

SPECIAL DETECTOR DELAY ASSIGNMENTS		Phase							
All Options: Delay Timer resets during detector phase yellow.	Code	1	2	3		5	6	78	8
Special Delay Option 1 (Attribute Bit 7) - Bypasses delay while flagged phases are timing.	2F8								
Special Delay Option 2 (Attribute Bit 8) - Bypasses delay while flagged phases are timing.	2F9								

\qquad of \qquad DETECTORS

INTERSECTION : \qquad Date Requested: $B y:$ \qquad Date Completed: \qquad $B y$ \qquad

Parameter	Location	Data	Units
Stuck ON Threshold 1	21 F		Minutes
Stuck OFF Threshold 1	22 F		Minutes
Chatter Threshold 1	23 F		Actuations per minute
Period 2	24 F		Seconds

${ }^{1}$ Set Data to "0" to disable Error Checking
${ }^{2}$ Default $=60$ seconds

System Detector	$\begin{aligned} & \hline \text { C1 } \\ & \text { Pin } \end{aligned}$	File/Slot/ Channel	Approach	Lane	Description
Det 1	39	12 U			
Det 2	40	J2U			
Det 3	41	16 U			
Det 4	42	J6U			
Det 5	43	I2L			
Det 6	44	J2L			
Det 7	45	16L			
Det 8	46	J6L			
Det 9	47	14U/L			
Det 10	48	J4U/L			
Det 11	49	18U/L			
Det 12	50	J8U/L			
Det 13	55	J1U/L			
Det 14	56	I1U/L			
Det 15	57	J5U/L			
Det 16	58	I5U/L			
Det 17	59	J9U			
Det 18	60	19 U			
Det 19	61	J9L			
Det 20	62	19L			
Det 21	63	I3U			
Det 22	64	J3U			
Det 23	65	17 U			
Det 24	66	J7U			
Det 25	76	I3L			
Det 26	77	J3L			
Det 27	78	17L			
Det 28	79	J7L			

Memory Locations of Interest
(press "8" key first)
1503 Set to a non-zero value to reset all System Detector logic
150F Collection Period Timer
15FF

INTERSECTION : \qquad Date Requested: $B y:$ Date Completed: $B y:$

OVERLAP A

Keystrokes: 3 + row + A		1	2	3	4	5	6	7	8
NORMAL PARENTS	A								
GREEN OMIT PARENTS	B								
RR PREEMPT PARENTS	C								
EV PREEMPT PARENTS	D								
LOAD SWITCH ASSIGNMENT	0								
DELAY TIME	1								
GREEN EXTENSION TIME	2								
Yellow clearance time	3								
RED CLEARANCE TIME	4								

OVERLAP C

Keystrokes: 3 + row + C		1	2	3	4		5	6	7	8
NORMAL PARENTS	A									
GREEN OMIT PARENTS	B									
RR PREEMPT PARENTS	C									
EV PREEMPT PARENTS	D									
LOAD SWITCH ASSIGNMENT	0									
DELAY TIME	1									
GREEN EXTENSION TIME	2									
YELLOW CLEARANCE TIME	3									
RED CLEARANCE TIME	4									

OVERLAPE									
Keystrokes: 3 + row + E		1	2	3	4	5	6	7	8
NORMAL PARENTS	A								
GREEN OMIT PARENTS	B								
RR PREEMPT PARENTS	C								
EV PREEMPT PARENTS	D								
LOAD SWITCH ASSIGNMENT	0								
DELAY TIME	1								
GREEN EXTENSION TIME	2								
YELLOW CLEARANCE TIME	3								
RED CLEARANCE TIME	4								

OVERLAP B									
Keystrokes: 3 + row + B		1	2	3	4	5	6	7	8
NORMAL PARENTS	A								
GREEN OMIT PARENTS	B								
RR PREEMPT PARENTS	C								
EV PREEMPT PARENTS	D								
LOAD SWITCH ASSIGNMENT	0								
DELAY TIME	1								
GREEN EXTENSION TIME	2								
YELLOW CLEARANCE TIME	3								
RED CLEARANCE TIME	4								

OVERLAP D

Keystrokes: 3 + row + D		1	2	3			5	6	7	8
NORMAL PARENTS	A									
GREEN OMIT PARENTS	B									
RR PREEMPT PARENTS	C									
EV PREEMPT PARENTS	D									
LOAD SWITCH ASSIGNMENT	0									
DELAY TIME	1									
GREEN EXTENSION TIME	2									
Yellow CLEARANCE time	3									
RED CLEARANCE TIME	4									

OVERLAP F

Keystrokes: 3 + row + F		1	2	3	4	5	6	7	8
NORMAL PARENTS	A								
GREEN OMIT PARENTS	B								
RR PREEMPT PARENTS	C								
EV PREEMPT PARENTS	D								
LOAD SWITCH ASSIGNMENT	0								
DELAY TIME	1								
GREEN EXTENSION TIME	2								
Yellow Clearance time	3								
RED CLEARANCE time	4								

\qquad of DEPARTMENT OF PUBLIC WORKS TRAFFIC AND LIGHTING DIVISION
\qquad
T.S. No.: Date Completed: \qquad
\qquad

RAILROAD CONFIGURATION		
RAILROAD SELECT (1, 2 or 3)	360	
ALL RED TIME AFTER RAILROAD FLASH	361	
RAILROAD CLEARANCE TIME	362	
LIMITED SERVICE MAX TIME	363	
RAILROAD LINK TO EV (see note to right)	364	
FREE TIME AFTER PREEMPT	365	
FREE TIME AFTER PREEMPT, TIMER	366	
MAX TIMER, MINUTES	367	
MAX TIMER, SECONDS	368	

RAILROAD PHASES		$\mathbf{1}$	$\mathbf{2}$	$\mathbf{3}$	$\mathbf{4}$	$\mathbf{5}$	$\mathbf{6}$	$\mathbf{7}$	$\mathbf{8}$
TRACK CLEARANCE	$3 A 0$								
RAILROAD EXIT	$3 A 1$								
RAILROAD PED ONLY	$3 A 2$								
LIMITED SERVICE	$3 A 3$								

EV CONFIGURATION		$\mathbf{1}$	$\mathbf{2}$	$\mathbf{3}$	$\mathbf{4}$	$\mathbf{5}$	$\mathbf{6}$	$\mathbf{7}$	$\mathbf{8}$
EV FLAGS	390								
EV A CLEARANCE PHASES	391								
EV B CLEARANCE PHASES	392								
EV C CLEARANCE PHASES	393								
EV D CLEARANCE PHASES	394								

EV A SETUP			
DELAY 1	310		
ACTIVE 2	311		
CLEARANCE 3	312		
MAXIMUM 4	313		
LINK TO EV 5	314		
MINIMUM 6	315		

EV B SETUP		
DELAY		
ACTIVE 2	320	
CLEARANCE 3	321	
MAXIMUM 4	322	
LINK TO EV 5	324	
MINIMUM		

EV C SETUP		
DELAY 1		
ACTIVE 2	330	
CLEARANCE 3	331	
MAXIMUM 4	333	
LINK TO EV 5	334	
MINIMUM		

EV D SETUP		
DELAY ${ }^{1}$	340	
ACTIVE 2	341	
CLEARANCE ${ }^{3}$	342	
MAXIMUM ${ }^{4}$	343	
LINK TO EV ${ }^{5}$	344	
MINIMUM ${ }^{6}$	345	

EV SETUP NOTES
1. The length of time before the controller responds to EV
Input. HOLD, CALL, ALLOW and Coordination functions are
not affected during this time.
2. The length of time that HOLD and CALL are set.
Coordination functions are suspended during this time.
3.The length of Green Clearance time. HOLD, CALL and
FORCE OFF are set by preemption logic during this time.
4. The maximum time that the preempt will remain in control
of the intersection.
5. Causes the selected EV to time after the current EV
times out.
6. Minimum time allowed from the end of one EV until the
start of another.

AUX 3 GREEN OUTPUT CONTROL
(Keypress 3+C+0)

	$\mathbf{1}$	Railroad A
	$\mathbf{2}$	Railroad B
	3	Emergency Vehicle A
	$\mathbf{4}$	Emergency Vehicle B
	5	Emergency Vehicle C
	6	Emergency Vehicle D
	7	Manual Control
	8	unused

\qquad of \qquad

TRAFFIC SIGNAL TIMING
Date Requested: \qquad $B y$: By: \qquad Date Completed:
T.S. No.: \qquad
Note: All data is located in Extended Memory and must be accessed with " 8 " followed by the 4 digit address.

BUS PRIORITY CONTROL		
BSP MODE	$1 E 00$	
PRIMARY ADDRESS	$1 E 01$	
SECONDARY ADDRESS	$1 E 02$	
CITY CODE	$1 E 03$	
HARDWIRED ETA	$1 E 04$	
TRIP POINT	$1 E 05$	

	BSP MODE (1E00) Options
0	$=$ Auto
$1=$	Logic OFF
$2=$	Logic ON/No Communications
$4=$	Headway/No Communications
7	$=$ Hardwire
$14=$	BSP OFF

BUS PHASES		$\mathbf{1}$	$\mathbf{2}$	$\mathbf{3}$	$\mathbf{4}$	$\mathbf{5}$	$\mathbf{6}$	$\mathbf{7}$	$\mathbf{8}$
PRIORITY	1E08								
DEMAND	1E09								
NORTH BOUND	1E0A								
SOUTH BOUND	1E0B								
EAST BOUND	1E0C								
WEST BOUND	1E0D								

BSP Override Table										
	Hour:Min	Dir	S	M	T	W	T			
0	:									
1	:									
2	:									
3	:									
4	:									
5	:									
6	:									
7	:									
8	:									
9	:									
A	:									
B	:									
C	:									
D	:									
E	:									
F	:									

Data Entry for BSP Override Table

1. "9" + "9" sets controller to Table Entry mode pointing to BSP Table, Event 0 .
2. Press "A" or "D" to move to desired Event.
3. Enter 4 digit Time of Day.
4. Enter 1 digit Direction Override.
$1=N \quad 3=N+S \quad A=S+W$
D $=\mathrm{N}+\mathrm{S}+\mathrm{W}$
$2=\mathrm{S} \quad 5=\mathrm{N}+\mathrm{E} \quad \mathrm{C}=\mathrm{E}+\mathrm{W} \quad \mathrm{E}=\mathrm{S}+\mathrm{E}+\mathrm{W}$
$4=\mathrm{E} \quad 6=\mathrm{S}+\mathrm{E} \quad 7=\mathrm{N}+\mathrm{S}+\mathrm{E} \quad \mathrm{F}=\mathrm{All}$
$\mathbf{8}=\mathrm{W} \quad \mathbf{9}=\mathrm{N}+\mathrm{W} \quad \mathbf{B}=\mathrm{N}+\mathrm{E}+\mathrm{W} \mathbf{0}=$ None Then press "E" to select Days of Week
5. Select Day(s) of Week.
6. Press "A" or "D" to move to next Event.
7. Repeat steps 3 through 6 for each Event
8. Press "F" key to finish.
\qquad DEPARTMENT OF PUBLIC WORKS TRAFFIC AND LIGHTING DIVISION TRAFFIC SIGNAL TIMING
INTERSECTION : \qquad Date Requested: \qquad $B y:$ \qquad $B y:$ \qquad Date Completed:

PLAN	Location	Offset
1	$7-A-1$	
2	$7-A-2$	
3	$7-A-3$	
4	$7-A-4$	
5	$7-A-5$	
6	$7-A-6$	
7	$7-A-7$	
8	$7-A-8$	
9	$7-A-9$	

Keypress: 4 + Plan \# + Parameter
\qquad
T.S. No.:

Offset Timing Plan	$7-A-A$

Midnight Sync Pulse				
7 7-A-B	Hour		7-A-C	Min

** Set to "000" to disable Zip Coordination

LOS ANGELES COUNTY
\qquad TRAFFIC SIGNAL TIMING

INTERSECTION :

Date Requested:
$B y:$ Date Completed: \qquad $B y:$ y:
\qquad
T.S. No.: \qquad
KEYPRESS: 4 + col + row

							OFFSET TIMES		
TIME OF DAY OPERATION SUMMARY							PLAN	Location	Offset
PLAN 1	PLAN 4		PLAN 7				1	7-A-1	
PLAN 2	PLAN 5		PLAN 8				2	7-A-2	
PLAN 3	PLAN 6		PLAN 9				3	7-A-3	
FREE							4	7-A-4	
NOTES							5	7-A-5	
							6	7-A-6	
							7	7-A-7	
			Midnight Sync Pulse				8	7-A-8	
Current Offset 7-A-0	Offset Timing Plan	7-A-A	7-A-B	Hour	7-A-C	Min	9	7-A-9	

$\underset{\substack{\text { OBERLY } \\ \text { ORVATON }}}{ }$		INTERVALS (in seconds)			COORDINATION FUNCTION FLAGS														
		PLAN 1	PLAN 2				PLAN 3												
COORDINATION PARAMETERS					Plan 1	Plan 2	Plan 3	$\begin{array}{\|c} \hline \begin{array}{c} \text { Force } \\ \text { Off } \end{array} \\ \hline \end{array}$	Hold	$\begin{array}{\|c\|} \hline \text { Ped } \\ \text { Restrict } \end{array}$	Call	$\begin{array}{\|c\|c\|c\|c\|c\|c\|c\|c\|c} \text { Forcof } \\ \text { of } \end{array}$	Hold	$\begin{gathered} \text { Ped } \\ \text { Restrict } \end{gathered}$	Call	$\begin{gathered} \text { Force } \\ \text { Off } \end{gathered}$	Hold	$\begin{array}{\|c\|} \hline \text { Ped } \\ \text { Restrict } \end{array}$	Call
0		1	2	3	4	5	6	7	8	9	A	B	c	D	E	F			
System Manual	0																		
Local Manual	1																		
Master Plan	2																		
Local Plan	3																		
TMC Override	4																		
Time of Day Plan	5																		
Special Function	6																		
Current Table	7																		
Minimum Cycle Length	8																		
Maximum Cycle Length	9																		
Master Cycle Timer	A																		
Local Cycle Timer	B																		
New Offset Time	C																		
Current Offset Time	D																		
Last Master Cycle	E																		
Last Local Cycle	F																		

\qquad DEPARTMENT OF PUBLIC WORKS TRAFFIC AND LIGHTING DIVISION TRAFFIC SIGNAL TIMING
INTERSECTION :
T.S. No.:
KEYPRESS: 5 + col + row

Date Requested:
$B y$: Date Completed: \qquad $B y:$
\qquad

\qquad

KEYPRESS: 6 + col + row

	INTERVALS (in seconds)			COORDINATION FUNCTION FLAGS											
				PLAN 7				PLAN 8				PLAN 9			
	Plan 7	Plan 8	Plan 9	Force off	Hold	$\begin{gathered} \text { Ped } \\ \text { Restrict } \end{gathered}$	Call	Force Off	Hold	$\begin{gathered} \text { Ped } \\ \text { Restrict } \end{gathered}$	Call	Force Off	Hold	$\left\lvert\, \begin{gathered} \text { Ped } \\ \text { Restrict } \end{gathered}\right.$	Call
	1	2	3	4	5	6	7	8	9	A	B	C	D	E	F
0															
1															
2															
3															
4															
5															
6															
7															
8															
9															
A															
B															
C															
D															
E															
F															

KEYPRESS: 7 + Plan Number + Attribute

COORDINATION PHASE ATTRIBUTES (Plans 1 through 9)																									
		PLAN 1								PLAN 2								PLAN 3							
Attributes		1	2	3	4	5	6	7	8	1	2	3	4	5	6	7	8	1	2	3	4	5	6	7	8
Coordination Lag Phases	0																								
Minimum Vehicle Recall Phases	1																								
Pedestrian Recall Phases	2																								
Maximum Vehicle Recall Phases	3																								
Barrier Recall Phases	4																								
Green Calling Phases	5																								
Green Call-To Phases	6																								
	7																								
Phases to use Max 1	8																								
Red Rest Phases	9																								
Omitted Phases	A																								
Phases to Omit Systems Detectors	B																								
STA Mode Phases	C																								
	D																								
	E																								
	F																								
					A	N							LA	N 5							LA	,			
Attributes		1	2	3	4	5	6	7	8	1	2	3	4	5	6	7	8	1	2	3	4	5	6	7	8
Coordination Lag Phases	0																								
Minimum Vehicle Recall Phases	1																								
Pedestrian Recall Phases	2																								
Maximum Vehicle Recall Phases	3																								
Barrier Recall Phases	4																								
Green Calling Phases	5																								
Green Call-To Phases	6																								
	7																								
Phases to use Max 1	8																								
Red Rest Phases	9																								
Omitted Phases	A																								
Phases to Omit Systems Detectors	B																								
STA Mode Phases	C																								
	D																								
	E																								
	F																								
					LA	N							LA	N 8							LA	N 9			
Attributes		1	2	3	4	5	6	7	8	1	2	3	4	5	6	7	8	1	2	3	4	5	6	7	8
Coordination Lag Phases	0																								
Minimum Vehicle Recall Phases	1																								
Pedestrian Recall Phases	2																								
Maximum Vehicle Recall Phases	3																								
Barrier Recall Phases	4																								
Green Calling Phases	5																								
Green Call-To Phases	6																								
	7																								
Phases to use Max 1	8																								
Red Rest Phases	9																								
Omitted Phases	A																								
Phases to Omit Systems Detectors	B																								
STA Mode Phases	C																								
	D																								
	E																								
	F																								

```
INTERSECTION :
N:
```

Date Requested:
$B y:$
T.S. No.: Date Completed:
$B y:$
KEYPRESS: 9 + Table Number to access Event 0 , then A or D to move up or down the table

TABLE 0 - Time Of Day

Event	Hour:Min	Plan or Function	Sun	$\underset{2}{\text { Mon }}$	${ }_{\text {Tue }}$	$\begin{array}{\|c} \mathrm{w}_{\text {ed }} \\ \hline \end{array}$	$\begin{array}{\|c\|} \hline \text { Thu } \\ 5 \end{array}$	${ }_{\text {Fri }}$	Sat
0									
1									
2									
3									
4									
5									
6									
7									
8									
9									
A									
B									
C									
D									
E									
F									

TABLE 1 - Time Of Day

Event	Hour:Min	Plan or Function	Sun 1	Mon 2	Tue 3 3	Wed 4	Thu 5	Fri 6	sat 7	
$\mathbf{0}$										
$\mathbf{1}$										
2										
3										
4										
5										
6										
7										
8										
9										
A										
B										
C										
D										
E										
F										

TABLE 2 - Time Of Day

Event	Hour:Min	Plan or Eunction	Sun_{1}	Mо		$\begin{aligned} & \text { Tue } \\ & \hline \end{aligned}$	$\left\lvert\, \begin{gathered} \mathrm{w}_{\text {ed }} \\ \hline \end{gathered}\right.$	${ }_{5}^{\text {Thu }}$	Fri		Sat
0											
1											
2											
3											
4											
5											
6											
7											
8											
9											
A											
B											
C											
D											
E											
F											

TABLE 3 - Time Of Day

Event	Hour:Min	Plan or Function			${ }_{2}$	${ }_{3}^{\text {Tue }}$	$\left\lvert\, \begin{gathered} \mathrm{weded}_{4} \end{gathered}\right.$	$\begin{gathered} \text { Thu } \\ 5 \end{gathered}$	Fri		${ }_{7}$
0											
1											
2											
3											
4											
5											
6											
7											
8											
9											
A											
B											
C											
D											
E											
F											

TABLE 4 - Time Of Day

Event	Hour:Min	Plan or Function	${ }_{1}$	${ }_{2}^{\text {mon }}$	${ }_{3}^{\text {Tue }}$	Wed_{4}	Thu	${ }_{6}^{\text {Fri }}$	Sat
0									
1									
2									
3									
4									
5									
6									
7									
8									
9									
A									
B									
C									
D									
E									
F									

Tables 0-4 Plan/Function:
Plan = Plan Number 1 through 9
Function:
Function:
A $=$ Special Func Output - ON Steady
$B=$ Special Func Output - ON Flashing
C $=$ Offset Timing Mode
$D=$ Special Func Output - OFF
$E=$ Free
$F=$ Time of Day Flash
Table 6:
"Day" refers to the $\mathrm{n}^{\text {th }}$ occurrence of the DOW flagged. For example, 01/03
indicates the $3^{\text {rd }}$ occurrence of the flagged DOW in January. " 0 " or greater than " 5 " is treated as the last occurrence.

Tables 6 and 7:
If "Table" is set to " B ", BSP Priority logic is ignored.

TABLE 5 - Annual Events

Event	Month/Day	Table	${ }_{1}^{\text {Sun }}$	Mon	${ }_{3}^{\text {Tue }}$	$\mathrm{W}_{4}^{\mathrm{Wed}}$	${ }_{5}^{\text {Thu }}$	${ }_{6}$		Sat
0										
1										
2										
3										
4										
5										
6				-	-					
7										
8										
9										
A										
B										
C										
D										
E										
F										

TABLE 6 - Floating Holidays

| Event | Month/Day | Table | sun
 1 | Mon
 2
 2 | Tuu
 3 | Wed
 4 | Thu
 5 | Fri
 6
 6 | Sat
 7 |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| $\mathbf{0}$ | $01 / 03$ | 1 | | X | | | | | |
| 1 | $02 / 03$ | 1 | | X | | | | | |
| 2 | $05 / 09$ | 1 | | X | | | | | |
| 3 | $09 / 01$ | 1 | | X | | | | | |
| 4 | $11 / 04$ | 1 | | | | | X | | |
| 5 | | | | | | | | | |
| 6 | | | | | | | | | |
| 7 | | | | | | | | | |
| 8 | | | | | | | | | |
| 9 | | | | | | | | | |
| A | | | | | | | | | |
| B | | | | | | | | | |
| C | | | | | | | | | |
| D | | | | | | | | | |
| E | | | | | | | | | |
| F | | | | | | | | | |

TABLE 7 - Exception Days

Event	Month/Day	Table	Su_{1}	$\begin{array}{\|c\|} \hline \text { Mon } \\ \hline \end{array}$	${ }^{\text {Tue }}$	Wed	$\begin{array}{\|c\|c\|} \hline \text { Thu } \\ \hline \end{array}$	Fri	Sat
0	01/01	1		X	X	X	X	X	
1	01/02	1		X					
2	07/04	1		X	X	X	X	X	
3	07/05	1		X					
4	11/10	1						X	
5	11/11	1		X	X	X	X	X	
6	11/12	1		X					
7	12/24	1		X	X	X	X	X	
8	12/25	1		X	X	X	X	X	
9	12/26	1		X				X	
A									
B									
C									
D									
E									
F									

\qquad Date Requested: \qquad Date Completed:
$B y$: \qquad
T.S. No.:
\qquad
\qquad $B y:$ \qquad

KEYPRESS: 8 + column + row

NOTES:

LACO-4E
 PROGRAMMABLE LOGIC WORKSHEET

LACO-4E
 Setting the Real Time Clock

The LACO-4E Clock Display mode consists of two displays, Time and Date. To enter the Clock Display mode, from the Base Display, press " C or " $\mathrm{A}-\mathrm{C}$ " to bring up the Time display. To show the Date display, from the Base Display, press "A-D". Pressing " A " or " D " from either display will toggle to the other display.

To set the time and date first access the Time display. If a WWV Clock is installed and configured, pressing the "E" key will cause the 170 to repoll the WWV Clock and update the time and date automatically.

The example above shows, from left to right, the Time display, Day of Week call lights (which is the same for both displays so is only shown once) and Date display. To manually set this time, first access the Time display and enter the time, $13: 20.26$, in $\mathrm{HH} / \mathrm{MM} / \mathrm{SS}$ format. Press " E " to save then press any number from 1 through 7 (for Sunday through Saturday) to set the Day of Week in the call lights (this also sets the Day of Week in the Date display).

Pressing "A" or "D" from here causes the Date display to appear (pressing any other key returns to the Base display). Enter the date, October 5, 1998, in MM/DD/YY format. Press "E" to save. The Day of Week can be modified or set here, as in the Time display. Press any key other than "A" or "D" to return to the Base display from here.

LACO-4E
 Maintenance Information Sheets 1-5

 STATUS FLAGS

 STATUS FLAGS}

```
RRCNTL (Railroad Mode Status) 3-B-3
    1 Mode 1 active - RR A Flash, Single Input
    2 Mode 2 active - RR B Limited Service, Single Input
    3 Mode 3 active - RR A Flash, Dual Input
    4 Mode 4 active - RR B Limited Service, Dual Input
    6
    7
    8
```

FLSFLG (Software Flash Status) 0-B-3
1 Railroad Preempt active at Startup
2 TOD (Time of Day) Flash
3
4 Railroad Flash
5
6 BADA Flash
7 BADE Flash
8 Stuck all Red Failure
CRDFLG (Coordination Status) 0-B-5
1 Local coordinator disabled
2 MasCyc not rolled over since last new plan
3 Received new plan override from TMC
4 In Slave mode
5 In Offset Timing mode
6 Using Zip Coord
7 In TOD Flash
8 Using LAG0 to set Lag phases
CLKFLG (Real Time Clock Status) 0-B-6
1 Setting time/date from WWV
2 Setting time/date from AB3418E message
3
4 Receiving time/date from LACO-xx 170E
5 Okay to override WWV/GPS Time and Date
6 Sending time/date to LACO-xx 170E
7 Entering time/date via keyboard
8 Daylight Savings Time status updated
PREFLG (Preempt Input Status) 0-B-C
1 Railroad A active
2 Railroad B active
3 EV A active
4 EV B active
5 EV C active
6 EV D active
7 Manual Control active
8 Any preempt input active

RRSTAT (Railroad State Status) 3-B-4
1 In transition to RR Track Clearance
2 Timing RR Track Clearance
3 In transition to RR Limited Service
4 Timing RR Limited Service
5 In transition to RR Flash
6 Timing RR Flash
7 Ending preempt
8 In transition to 1, 3 or 5 above
EVSTAT (Emergency Vehicle Status) 3-B-6
1 EV A in service
2 EV B in service
3 EV C in service
4 EV D in service
5 All Ped protection disabled
6 Timing EV Delay
7 Timing EV Active
8 Timing EV Clearance
RNGFLG (Ring Status) 0-B-D
1 Ring A ready to terminate cross barrier
2 Ring B ready to terminate cross barrier
3 Ring A terminating to Lagging phase
4 Ring B terminating to Lagging phase
5 Ring A terminating to Leading phase
6 Ring B terminating to Leading phase
7 Ring A terminating to Cross Street phase
8 Ring B terminating to Cross Street phase
OLPFLG (Overlap Termination Status) 0-B-E
1 Overlap A terminating
2 Overlap B terminating
3 Overlap C terminating
4 Overlap D terminating
5 Overlap E terminating
6 Overlap F terminating
7
8 At least one overlap terminating

ERROR FLAGS

```
MEMERR (Memory Errors) 0-A-1
    1 \text { BADA error at power up}
    2
    3
    4 Timing download error: Non LACO-4E data
    5 Timing download error: bad checksum
    6 \text { Corrupted Base RAM}
    7 \text { Stack overflow}
    8 Bad EPROM
WWVERR (WWV Clock Errors) 0-A-5
    1 \text { Not locked on}
    2
    3 \text { Receiver timed out}
    4 \text { Bad or unrecognized data}
    5
    6
    7 \text { No comm port configured for WWV/GPS}
    8 Bad or disconnected cable
BMsgErr (BSP Received Message Errors) 1-E-4-F
    1 \text { Bad Opening or Closing flag}
    2 Incorrect Address }1\mathrm{ byte
    3 Incorrect Address 2 byte
    4 Incorrect City Code byte
    5 \text { Incorrect Control, IPI and/or Command byte}
    6 \text { Incorrect BSP Revision byte}
    7 future use
    8 Bad Checksum
```


USEFUL MEMORY LOCATIONS

These four pages provide useful information about program status and operation. The memory locations are arranged by major functionality. Each location (or group of locations) provides the data type; (D) for decimal data and (F) for flag data, the mnemonic, the memory location and a brief description of what the data is used for. Note that 4 digit memory locations require the first key press to be " 8 ". Note also that these locations can be viewed as either flag data or decimal data by toggling the Front Panel Stop Time switch.

PREMPTION

Input Actuation Counters
(D) RRACNT (3-8-0) Number of Railroad A input actuations - Increments each time C1-pin 51 transitions to ON for more than .5 seconds.
(D) RRBCNT (3-8-1) Number of Railroad B input actuations - Increments each time C1-pin 52 transitions to ON for more than .5 seconds.
(D) EVACNT (3-8-2) Number of EV A input actuations - Increments each time C1-pin 52 transitions to ON for more than .5 seconds.
(D) EVBCNT (3-8-3) Number of EV B input actuations - Increments each time C1-pin 52 transitions to ON for more than .5 seconds.
(D) EVCCNT (3-8-4) Number of EV C input actuations - Increments each time C1-pin 52 transitions to ON for more than .5 seconds.
(D) EVDCNT (3-8-5) Number of EV D input actuations - Increments each time C1-pin 52 transitions to ON for more than .5 seconds.
(D) MANCNT (3-8-6) Number of Manual Control Enable input actuations - Increments each time C1-pin 52 transitions to ON for more than .5 seconds.

Active Preempt Timers

(D) DELAY (3-0-0)
(D) ACTIVE
(D) CLEAR
(D) $M A X$
(D) LINK
(D) EVCLR
(D) MRKTMR
(D) RRMIN
(D) RRSEC
(3-0-0) Remaining Delay time for current EV
(3-0-1) Remaining Active time for current EV
(3-0-2) Remaining Track Clearance time
(3-0-3) Remaining max time for current EV
(3-0-4) Next EV to link to
(3-0-5) Timing sheet Clearance time for current EV
(3-6-6) Time remaining to stay Free after preemption/manual control
(3-6-7) Remaining minutes in Railroad max timer
(3-6-8) Remaining seconds in Railroad max timer

COORDINATION

(D) MASPLN (4-0-2) Currently commanded plan by Master Coordinator
(D) LOCPLN
(4-0-3) Current plan being run by Local Coordinator
(D) TMCPLN
(4-0-4) Current TMC Override Plan sent from Central
(D) TODPLN (4-0-5) Current plan scheduled by Time Of Day operation
(D) TODSPF
(D) TODTBL
(D) MASCYC
(D) LOCCYC
(4-0-6) Current state of Special Function Output
(4-0-7) Current Time of Day table selected by Exception tables
(D) NEWOFF
(4-0-A) Master Cycle timer
(4-0-B) Local Cycle timer
(D) CUROFF
(D) LMSTER
(D) LLOCAL
(D) CYCLEN
(D) MSYNC
(F) SICBIT
(F) CORDM
(F) CORDO
(F) CORDF
(F) MAX2
(F) CRDDIS
(4-0-C) Current Active Offset parameter
(4-0-D) Current offset value
(4-0-E) Last Master Cycle time
(4-0-F) Last Local Cycle time
(7-B-0) Current cycle length
(7-B-1) Coordination sync pulse timer
(7-E-0) Standard Interconnect bits
(7-E-1) Received 7-wire modem data buffer
(7-E-3) Offset timing in progress indicator
(7-E-4) Offset timing input status
(7-E-7) Phases to time Max2 green
(7-B-0) Composite coordination function status

USEFUL MEMORY LOCATIONS

PHASE
(F) DYNOFZ (0-0-B) Phases served since last barrier crossing
(F) CalFIg
(0-1-0) Intersection Call Status flags
(F) LAG
(0-2-D) Current lag phases (last phases before barrier crossing)
(F) LEAD
(0-9-A) Current lead phases (first phases after barrier crossing)
(F) PED
(F) ALLOW
(0-5-D) Current enabled ped phases
(F) DYNXCL
(0-5-F) Current allowed phases
(F) DYNRST
(0-6-0) Current Exclusive phases
(0-6-1) Current Restricted phases
(0-6-3) Active Queue phases
(F) QUEACT
(0-6-9) Current phases with Queue hold applied
(F) QHOLD
(F) FORCE2
(F) ADVAN
(F) GFAZE
(F) WFAZE
(F) DWFAZE
(F) YFAZE
(F) RFAZE
(F) FAZIN
(F) FAZNXT
(0-6-E) Phases with unconditional Force Off applied
(0-6-F) Phases being advanced
(0-7-0) Current green phases
(0-7-1) Current walk phases
(0-7-2) Current Flashing Don't walk phases
(0-7-3) Current yellow phases
(0-7-4) Current red phases
(0-7-5) Current phases in service
(F) FAZLST
(0-7-6) Next phases to be served
(F) IRCALL
(F) DCALL (0-7-C) Phases being called by vehicle detection
(0-7-7) Last phases served
(F) VCALL (0-7-D) Composite Vehicle calls
(F) PCALL (0-7-E) Composite Ped calls
(F) CALL
(F) DETLOK
(F) RESLOK
(0-7-F) Composite calls
(F) XCLLOK
(F) OLOCK
(D) ALLRED
(D) GRSTMR
(D) GRSTMR
(F) COCALL
(F) PEDRST
(F) HOLD
(F) FORCE1
(0-A-B) Phases with current detector red or yellow locked call
(0-A-C) Phases with restricted phasing locked call
(0-A-D) Phases with exclusive phasing locked call
(0-A-E) Phases with locked call due to overlap termination
(1-0-9) Stuck all red delay timer
(1-9-A) Ring A Green Rest delay timer
(1-9-B) Ring B Green Rest delay timer
(3-F-C) Phases being called by coordinator
(3-F-D) Phases with ped restrict applied
(3-F-E) Current phases with coordination/preempt hold applied
(3-F-F) Phases with conditional (requires opposing call) Force Off applied

OVERLAP

(F) CNTINU (0-9-F) Overlaps continuing green through parent phase termination
(F) OGFAZE (0-7-8) Current green overlaps
(F) OYFAZE (0-7-9) Current yellow overlaps
(F) ORFAZE (0-7-A) Current red overlaps

USEFUL MEMORY LOCATIONS

COMMUNICATIONS - AB3418E Slave
(F) AB8RxBuf (1-4-0-0 to 1-4-3-F)

Last Received Message Buffer - Raw data
(F) AB8StBuf (1-4-4-0 to 1-4-7-F)

Last Received Message Buffer - Unstuffed data
(F) AB8TxBuf (1-4-8-0 to 1-4-C-F)

Last Transmitted Message Buffer - Unstuffed data
CRC Error Status of last received message
$\begin{array}{ll}\text { (F) AB8RCS } & (1-4-E-0) \\ \text { (F) } & \text { (1-4-D-9 to 1-4-D-A) }\end{array}$
(D) no name (1-4-F-7)

Base address of AB3418E Slave communications port
Number of received messages with CRC error
COMMUNICATIONS - AB3418E Master
(F) AB7TxBuf (1-6-C-0 to 1-6-D-F)
(F) AB7Tx (1-6-F-C to 1-6-F-D)
(F) ABTime (1-6-F-F)

Last Transmitted Message Buffer - Unstuffed data Base address of AB3418E Master communications port Transmit trigger for AB3418E SetTime message

COMMUNICATIONS - Bus Signal Priority
(F) BSPRxBuf (1-E-7-0 to 1-E-8-F)
(F) BStBuf (1-E-9-0 to 1-E-A-F)
(F) BSPTxBuf (1-E-B-0 to 1-E-C-F)
(F) BSPFCS (1-E-5-0)
(D) no name (1-E-6-7)
(F) BSPRxTx (1-E-4-0 to 1-E-4-1)
(F) B_Addr1 (1-E-4-4)
(F) B_Addr2 (1-E-4-5)
(F) B_City (1-E-4-6)
(F) B_Ctrl (1-E-4-7)
(F) B_IPI (1-E-4-8)
(F) B_Cmd (1-E-4-9)
(F) B_Rev (1-E-4-A)
(F) BusiD1 (1-E-4-B)
(F) BusID2 (1-E-4-C)
(F) BusStat (1-E-4-D)
(F) BusETA (1-E-4-E)
(F) BMsgErr (1-E-4-F)

Last Received Message Buffer - Raw data
Last Received Message Buffer - Unstuffed data
Last Transmitted Message Buffer - Unstuffed data
CRC Error Status of last received message
Number of received messages with CRC error
Base address of BSP communications port
Received BSP Address 1 byte
Received BSP Address 2 byte
Received BSP City byte
Received BSP Control byte
Received BSP IPI byte
Received BSP Command byte
Received BSP Revision byte
Received BSP Bus ID MSB byte
Received BSP Bus ID LSB byte
Received BSP Status byte
Received BSP ETA byte
Error Status of last received message

COMMUNICATIONS - WWV/GPS

(F) WWVErr (0-A-5)
(D) TxMsg (2-0-0)
(D) WHour $\quad(2-0-1)$
(D) WMin $\quad(2-0-2)$
(D) WSec $\quad(2-0-3)$
(D) WMonth (2-0-4)
(D) WDay $\quad(2-0-5)$
(D) WYear $\quad(2-0-6)$
(D) WDOW (2-0-7)
(F) WWVFlag (3-D-0)
(F) WWVTxRx (3-D-5 to 3-D-6)
(F) WWVRxBuf (1-9-D-0 to 1-9-D-F)

WWV/GPS Error status flags
WWV/GPS Poll Message WWV/GPS Last polled Hour WWV/GPS Last polled Minute WWV/GPS Last polled Second WWV/GPS Last polled Month
WWV/GPS Last polled Day
WWV/GPS Last polled Year
WWV/GPS Last polled Day Of Week
WWV/GPS Control Flags
Base address of WWV/GPS communications port
Last Received Message buffer

USEFUL MEMORY LOCATIONS

MISCELLANEOUS

(F) IN1	$(0-8-0)$	Buffered Inputs from Port 7401 (see Appendix E1 for bit descriptions)
(F) IN2	$(0-8-1)$	Buffered Inputs from Port 7402 (see Appendix E1 for bit descriptions)
(F) IN3	$(0-8-2)$	Buffered Inputs from Port 7403 (see Appendix E1 for bit descriptions)
(F) IN4	$(0-8-3)$	Buffered Inputs from Port 7404 (see Appendix E1 for bit descriptions)
(F) IN5	$(0-8-4)$	Buffered Inputs from Port 7405 (see Appendix E1 for bit descriptions)
(F) IN6	$(0-8-5)$	Buffered Inputs from Port 7406 (see Appendix E1 for bit descriptions)
(F) IN7	$(0-8-6)$	Buffered Inputs from Port 7407 (see Appendix E1 for bit descriptions)

(F) OUT1 (0-9-0) Buffered Outputs to Port 7401 (see Appendix E2 for bit descriptions)
(F) OUT2 (0-9-1) Buffered Outputs to Port 7402 (see Appendix E2 for bit descriptions)
(F) OUT3 (0-9-2) Buffered Outputs to Port 7403 (see Appendix E2 for bit descriptions)
(F) OUT4 (0-9-3) Buffered Outputs to Port 7404 (see Appendix E2 for bit descriptions)
(F) OUT5
(0-9-4) Buffered Outputs to Port 7405 (see Appendix E2 for bit descriptions)
(F) OUT6
(0-9-5) Buffered Outputs to Port 7406 (see Appendix E2 for bit descriptions)
(F) OUT7
(0-9-6) Buffered Outputs to Port 7407 (see Appendix E2 for bit descriptions)
(D) PLONG (1-0-C) Number of controller long power downs
(D) PSHORT (1-0-D) Number of controller short power downs
(D) DWNMIN (1-9-2-C) Number of minutes in last power down
(D) DWNSEC (1-9-2-D) Number of seconds in last power down
(D) NOVRED (1-9-2-E) Checksum of data being copied from NOVRAM
(D) NOVRIT
(1-9-2-F) Checksum of data being copied to NOVRAM
(D) DWNTIM (1-9-2-0 to 1-9-2-5) Time/Date of last power down
(D) UPTIME
(D) RRTIM
(D) EVTIME
(D) STPTIM
(1-9-2-6 to 1-9-2-B) Time/Date of last power up
(1-9-3-0 to 1-9-3-5) Time/Date of last Railroad preempt sequence
(1-9-3-6 to 1-9-3-B) Time/Date of last EV preempt sequence
(1-9-4-0 to 1-9-4-5) Time/Date of last Ext Stop Time (Cabinet/CMU Flash)
System Detector Dynamic Data Collection storage
(D) SDPerTmr (1-5-0-F) Collection Period Timer
(D) SDIChCtr (1-5-1-0 to 1-5-1-F) I-File Detectors Chatter Accumulators
(D) SDJChCtr (1-5-2-0 to 1-5-2-F) J-File Detectors Chatter Accumulators
(D) SDIOnCtr (1-5-3-0 to 1-5-3-F) I-File Detectors Stuck ON Accumulators
(D) SDJOnCtr (1-5-4-0 to 1-5-4-F) I-File Detectors Stuck ON Accumulators
(D) SDIOfCtr
(1-5-5-0 to 1-5-5-F) I-File Detectors Stuck OFF Accumulators
(D) SDJOfCtr
(D) SDIVCtr

J-File Detectors Stuck OFF Accumulators
D) SD
(D) SDIOccH (1-5-9-0 to 1-5-A-F) I-File Detectors Occupancy Accumulators
(D) SDJOccH (1-5-B-0 to 1-5-C-F) J-File Detectors Occupancy Accumulators
(D) SDSeqNum
(1-5-F-F) Data Collection Sequence Number
AB3418E Message Data Buffers (reported in AB3418E GetSystemDetectorData Message)
(D) SDIVol (1-6-0-0 to 1-6-0-F) I-File Detector Volumes
(D) SDJVol (1-6-1-0 to 1-6-1F) J-File Detector Volumes
(D) SDIOStat (1-6-2-0 to 1-6-2-F) I-File Detector Occupancy/Status
(D) SDJOStat (1-6-3-0 to 1-6-3-F) J-File Detector Occupancy/Status

APPENDIX B - FEEDBACK REPORTS
 LACO 4E USERS MANUAL

B1. LACO-4E User Comment Form
B2. LACO-4E Trouble Report Form

LACO-4E User Comment Form

User Information

Organization: \qquad Name \qquad
Phone
Fax
Email
Do you wish to be contacted by a Los Angeles County representative regarding this feedback?
(Yes) (No) (Optional)

Equipment Information

LACO-4E Version
Controller Manufacturer and Model
Cabinet Type:
Conflict Monitor: Modem:
Other: \qquad

Comments

Please circle one: (Problem Report) (Feature Request) (General Comment)
Place comments below. Attach additional pages or information as needed:
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad

Please mail or fax this form to the Los Angeles County DPW office listed below. Thank you.
Los Angeles County - DPW
Operational Services Division
P.O. Box 1460

Alhambra, CA 91802
(626) 458-1700 (voice)
(323) 223-4152 (fax)

LACO-4E Trouble Report Form

| Agency
 Phone
 Pron
 Trouble Location
 Reporting Person
 Date/Time | | |
| :--- | :--- | :--- | :--- |
| Trouble Description | | |

LACO-4E Version:
Controller Manufacturer/Model ___ Cabinet Type:
Date and Time Problem was reported
Estimated time of problem occurrence
Are LED's on load switches illuminated normally? (Yes) (No)
Has the conflict monitor tripped? (Yes) (No)
If Yes:
What is the failure indication?
What are the channel indications?
What does the controller front panel display show?
Does the controller respond to the keypad key entries? (Yes) (No)
If Yes, what does the Ring A display show?
If Yes, what does the Ring B display show?
Is the phase timing status still being updated on any of the displays? (Yes) (No)
Is the controller connected to central systems communications? (Yes) (No)
If Yes:
Do lights on controller modem appear to be acting normally? (Yes) (No)
If No (modem does not look normal):
What looks abnormal?

Please fax this form to (323) 223-4152 as soon as possible. Attach additional pages as needed for other information or comments. You may also wish to telephone or page a Los Angeles County DPW representative to report this event. Thank you.

TERMS

\varnothing - see Phase.
Added Green Per Actuation - Typically used for Advance loops where no First Vehicle loops exist. Each actuation of the Advance loops during Phase Red increments a counter which is used in place of Minimum Green if its value exceeds that parameter
Advance - Cause immediate termination of a Phase in service at the beginning of a Railroad preempt. see also Manual Advance.
Advance Loop - Position of loops typically between 200 and 300 feet ahead of an intersection.
Allowed Phases - The phases that the Program is currently recognizing as valid. These may change with a Railroad or EV preempt.
Alternate Phase - see Supplemental Phase
Artery - A primary route with a moderately high traffic volume. A Main street as opposed to a Side street.
Associated Phase Recall - A feature that assures that if a particular Phase goes Green, one or more other flagged phases will receive a locked call.
Asynchronous Communications Input Adapter (ACIA)- Serial data port. Allows communications between the 170E controller and external hardware.
BADA - An indication on the Function display that shows during reinitialization or when the program detects corrupted data in the CPU Base RAM. Toggling the Front Panel Stop Time switch clears the RAM and restarts the program.
BADD - An indication that invalid data was detected prior to a download of data from the Timing Saver Module (7000h NOVRAM) and CPU RAM.
BADE - An indication on the Function display that shows when the program detects corrupted data on the EPROM chip itself. In this case the EPROM must be replaced.
Barrier - The imaginary line that separates Main street phases/movements from Side street phases/movements.
Call - see Demand
Call/Active light - One of eleven red LED's located on the Front Panel of the 170E controller used to indicate various conditions, flags or data.
Caltrans - California Department of Transportation.
Central - see as Central System.
Central System -
Clearance - In the most general sense, any phase or interval intended to empty an intersection in preparation for another phase or condition (such as flash). Examples include Railroad clearance, EV clearance, Yellow clearance, Ped clearance and Exit clearance. In a narrower context, the term is often used to denote those intervals from the beginning of Yellow to the beginning of Green of the next conflicting phase.
Clearance phases - In EV preempt, those phases that must serve in order to permit the emergency vehicle to pass through an intersection as quickly as possible.
Concurrent phases - Phases that may safely time together.
Conflict - Condition where 2 or more non-concurrent phases erroneously time together.
Conflict Monitor Unit (CMU) - Safety device whose primary function is to detect a Conflict condition and set hardware Flash.
Coordination - A system for synchronizing the operation of successive intersections to assure uninterrupted traffic flow.
Counts - A total of Vehicle actuations for any particular detector input occurring during Phase Red.
Cycle - The time allotted for one complete Coordination sequence.
Day of Week (DOW) - Sunday, Monday, Tuesday, Wednesday, Thursday, Friday or Saturday. Used in Time of Day tables and Real Time Clock displays.
Default - A value set by the Program in the absence of user set data.
Delay - The postponement of program action for a programmable time interval following some event such as a Vehicle detector call.
Demand - A request for service by a Ped/Vehicle movement.
Density - A measure of how many vehicles per second are passing a particular point in a street lane.

APPENDIX C - GLOSSARY OF TERMS AND ACRONYMS LACO 4E USERS MANUAL

Detection - The sensed presence of a vehicle or the equipment assigned to this task.
Detector (amplifier) - The electronic module responsible for sensing the presence of a vehicle over a loop at a particular position in a lane and placing a call to the controller.
Dial (see also Plan) - An imaginary clock (in analogy to older mechanical units) with user- defined time markers used to toggle on and off Coordination Functions (Call, Hold, Force Off, Ped Restrict). It runs continuously in the background and makes one revolution in one cycle before repeating.
Diamond Interchange Program - A program developed by Caltrans for freeway ramp monitoring.
Don't walk - see Ped Clearance
Down Time Accumulator (DTA) - A timer inside the 170E controller, which keeps track of the duration of any A. C. power failures up to a total of 255 minutes. It is used by the program to correct the 170E controller Real Time clock when power is restored.
Driveway Flash - A phase so flagged will flash its Green output when timing its normal Green intervals. Other intervals and outputs for that phase are unaffected.
Emergency Vehicle (EV) - A preempt routine intended to clear an intersection and give right-of-way to certain phases being used by emergency vehicles.
Entrapment - A situation where a vehicle may legally turn left on a Yellow ball indication but is prevented from safely completing the turn because the opposite through Phase remains Green. If the Yellow interval expires, the vehicle may be trapped in the middle of the intersection facing a Red indication but unable to turn.
Erasable Programmable Read Only Memory (EPROM) - A data memory device in the 170E controller that can be read but not written to by the controller.
EV clearance - That portion of an EV preempt where the intersection rests in the phases devoted to giving right-of-way to emergency vehicles.
EV delay - A timer which postpones the Forcing off of non-EV clearance Phases.
Event - A programmable time marker used to initiate or disable Coordination functions.
Event table - A listing of specific times (Months, Days, Hours, Minutes) defining Coordination events and selecting the action to be taken at that time.
Exception days - Special calendar days that depart from normal Coordination.
Exclusive Phase - A Phase that has no concurrent phases, i.e. a phase that can only time by itself.
Exit Clearance - A Vehicle Phase or movement devoted to moving vehicles out of an intersection.
Typically used at very wide intersections to extend the Green in order to clear out the intersection after the normal through Phase terminates.
Exit phases - The first regular Phases served upon leaving a RR1 Flash preempt.
Extension - The amount of time a vehicle actuation (call) prolongs the green time for a particular Phase.
First Vehicle Detection - Vehicle detection (i.e. a cut loop in the pavement) that is located at the stop line or back of the crosswalk.
Flag - A User settable indication of the ON/OFF status of any of a number of program parameters.
Generally it indicates one or more of eight items which, when selected, light up LED's on the 170E controller Front Panel.
Flash - A condition of the signals where the Yellow and Green indications are dark and all Red indications alternate ON and OFF at approximately 1 Hz .
Flashing Don't Walk - The interval during which the Pedestrian signals flash Red ("DON'T WALK" or "HAND" symbol).
Floating holidays - Those holidays that fall on different calendar days from year to year.
Force Off - To cause termination of the Phase presently timing. Effective only if there is an opposing call and the "Minimum" intervals (Minimum Green, Added Initial, Walk and Flashing Don't Walk) have expired. Free - Not coordinated.
Fully Traffic Actuated (FTA) Signal - An intersection that has detection for all vehicle and pedestrian movements. This type of operation assigns the right-of-way on the basis of actual traffic demand within given limitations.
Gap - A space between moving vehicles or the time interval between sequential detector actuations caused by that spacing.
Gap Out - The termination of a phase, in the presence of a conflicting call, caused by a gap of sufficient duration.
Gap Reduction - A programmed diminishing of the Gap time required to allow termination of a Phase.

APPENDIX C - GLOSSARY OF TERMS AND ACRONYMS LACO 4E USERS MANUAL

Gap Termination - Same as "Gap Out"
Green band - An interval of guaranteed Green time on a Time-Space diagram that progresses from one intersection to the next along with an assumed platoon of vehicles to assure that they can continue through adjacent intersections uninterrupted.
Green Extension - An interval that delays the Green to Yellow transition of an Overlap beyond the Green to Yellow transition of its parent Phase when the two would otherwise occur simultaneously.
Green Omit - A flag to omit the Green interval from an overlap of one or more of its parent Phases.
Typically used with two-color right turn Overlaps to turn off the Green arrow during the through phase Ped and Green intervals.
Hardware Flash - A flash condition wherein the Red signal indications are removed from program control by switching them with mechanical relays to be driven by separate dedicated flasher units. The CMU initiates flash by utilizing this capability. (Compare with Software Flash)
Hold-To - extend the duration of the Green interval beyond its normal timing constraints. Typically implemented by Coordination timing but also used for Queue timing and preemption.
Holding loop - Typically, a loop in a left turn pocket that extends or "holds" the through phase.
Holiday Table - A list of special days that depart from normal Coordination.
I file - In a Model 332 controller cabinet, the upper of two racks for plug-in electronic detector modules that comprise the Input file. (see also J file)
Initialization - The process of loading CPU RAM with EPROM default timing on initial power up of the 170E controller running under LACO-4E.
In service - Timing some interval (Green, Yellow or Red Clearance) of a Phase.
Interconnect - A means of coordinating adjacent intersections by synchronizing signals transmitted between them, typically on wires. Sometimes used as a generic term to refer to any kind of Coordination scheme.
Intersection - The crossing (or meeting) place of two or more streets.
Interval - In general, the time devoted to any particular condition of operation wherein the signal indications do not change. Specifically, any of 16 defined controller conditions or states of operation such as Minimum Green, Walk, Flashing Don't Walk, Vehicle Extension, Yellow, etc.
Isolator - A plug-in electronic module that allows the 170E controller to receive a field input while preventing any electrical continuity between the controller and field circuits.
J file - In a Model 332 controller cabinet, the lower of two racks for plug-in electronic detector modules that comprise the Input file. (see I file)
Lag - To follow in time sequence.
Lag Phase - The phase of a quadrant pair that follows (lags) the Lead Phase. The last phase of a quadrant pair to be served before crossing the barrier (assuming both phases calling).
Lead - To precede in a time sequence.
Lead Phase - The phase of a quadrant pair that would be served first when crossing the barrier (assuming both phases calling).
Leading Green Arrow - same as Leading Left Turn
Leading Left Turn (LLT) - A Protected/Permissive left turn or any other left turn where anti-backup operation is desired, see Protective/Permissive Left Turn.
Leading Left turn Arrow (LLA) - same as Leading Left Turn.
Load switch - A plug-in module that switches A. C. current to the signal lamps at the command of the 170E controller. Also referred to as "switch pack".
Local Cycle Timer - Timer used by the Local controller to output its coordination functions. Lags the Master cycle timer by a programmable offset time.
Lock - To latch and remember a call until it is serviced.
Long power down - A power outage lasting 2 or more seconds.
Loop - Specifically, a coil of wire embedded in the pavement for the purpose of sensing the presence of vehicles. Loosely, the detector or detector channel associated with a particular loop or set of loops. Ltd. - Limited, as in Railroad Limited Service
Manual advance - A 170E controller input which, when in Manual Operation, allows a push-button to Force Off the Phase presently timing in order to advance service to the next phase.
Manual enable - A 170E controller input which must be held "TRUE" in order for the "Manual Advance" input to be effective.

APPENDIX C - GLOSSARY OF TERMS AND ACRONYMS LACO 4E USERS MANUAL

Master - In a Coordination system, the controller serving as a reference for the relative offsets of the other intersections in the system.
Master Cycle Timer - The main Coordination timer, which all other Coordination functions are slaved to.
Max - Maximum
Max Extension 1 - In uncoordinated (Free) operation, the maximum time vehicles can extend the Green, beginning with the first opposing call after Minimum Green.
Max Extension 2 - In coordinated operation, the maximum time vehicles can extend the Green, beginning with the first opposing call after Minimum Green.
Maximum Gap - A Phase timing parameter that sets the upper value for a calculated ramp used in the Gap Reduction routine.
Max Out - see "Max Termination"
Max Termination - The termination of a Phase in the presence of an opposing call because the Max Extension timer has expired (not because of a gap in traffic).
Min - Minimum
Minimums - The portions of the Green interval that are guaranteed to time (except when overridden by a Railroad preempt). Any combination of Walk, Flashing Don't Walk, Minimum Green and Variable Initial Green.
Minimum Gap - The lowest value the Vehicle Extension may achieve during Gap Reduction.
Minimum Green - An interval, which guarantees the minimum amount of time a Vehicle Phase, will show Green under normal (no preempt) conditions. The first vehicle Green interval to time.
Minimums - The portion of the Green interval made up of Walk, Flashing Don't Walk, Minimum Green and Variable Initial Green.
ML2 format- A type of serial communications protocol used by Caltrans.
Modem - MOdulator/DEModulator. A plug-in electronic module that enables serial communication between intersections by means of coded audio tone bursts on dedicated wires.
Non-Volatile Random Access Memory (NOVRAM) - A read-write memory in the 170E controller not subject to data loss during power failures.
Offset - Amount of time that the local controller lags behind the system master.
Offset Timing - A method of Coordination based on an "event" rather than time-of-day.
Opposing call - A call to non-concurrent (conflicting) Phase.
Overlap - An auxiliary Vehicle Phase defined to time concurrently with one or more regular Vehicle Phases designated as "parent" phases. If one parent phase terminates and the next phase is also a parent phase of that Overlap, then the Overlap will remain Green during the transition. The Overlap will only terminate when a parent phase transitions to a non-parent phase.
Parent Phase - A Vehicle Phase from which an Overlap is derived. If Overlap A is defined as " $8+1$ ", then 8 and 1 are parent Phases.
Ped-Pedestrian
Ped clearance - The time during which the flashing "DON'T WALK" or flashing hand symbol is displayed.
Ped protection - The total time from the beginning of Flashing Don't Walk to the beginning of a conflicting Phase. Generally, the sum of the Flashing Don't Walk, Yellow and Red Clearance intervals for a Phase.
Ped push button (PPB) - Actuating device that causes a Ped Call to be placed.
Ped Recall (Rest in Walk) - A mechanism whereby ped calls are generated internally every phase sequence cycle.
Ped Restrict - A coordination function, which stores a Ped call but delays its service until the end of Ped Restriction.
Phase-1) A particular traffic movement.
2) The direction associated with a traffic movement.
3) A time interval associated with a traffic movement.

Phase flag - A flag that selects one of eight possible phases and turns on the associated Call light.
Phase North - The direction parallel to that leg or approach of an intersection defined to be north for purposes of assigning unambiguous loop designations.
Plan (see also Dial) - One of the 9 possible combinations of cycle lengths and offsets.
Port - A serial port provided in the 170E controller. Same as Comm Port or Communications Port.

APPENDIX C - GLOSSARY OF TERMS AND ACRONYMS LACO 4E USERS MANUAL

Pre-timed Signal - The right-of-way at an intersection is assigned according to a predetermined schedule. The length of the time interval for each signal indication in the cycle is fixed.
Preempt - An interruption of normal intersection operation to provide special right-of-way for emergency vehicles or railroad trains. Same as Preemption.
Presence - A mode of detector operation wherein a constant call is placed to the 170E controller as long as a vehicle is sensed over the loop. Contrasted with "pulse".
Programmable Read Only Memory (PROM) - A data memory device in the 170E controller that can be read but not written to by the controller. The data is written once by use of special equipment but cannot thereafter be altered or erased. As a slang term, "PROM" is often used to refer to any of a whole class of semi permanent memory devices including EPROM's.
PROM module - An electronic memory module that plugs into 170E controller. It can accept NOVRAM and EPROM chips that are used in some cases to store, upload and download programs and data. Quadrant - A Lead/Lag pair of vehicle Phases (including associated Ped Phases) comprising one quarter of a standard dual Ring 8-Phase Phase diagram. That is, 01,02 and 2 Ped are in the same quadrant, 05 , 06 and 6Ped are in another quadrant, etc.
Queue - Pertaining to a line of vehicles. Often used as an abbreviation for "Queue Clearing" detector. Queue Clearing loop - A loop devoted only to clearing out an initial line of vehicles present when a Phase turns Green. The Phase is held Green until the first gap or the Queue Max timer expires, then the loop is disconnected until the next Phase Red.
Queue Maximum - A timer that starts with Phase Green. When the timer expires, the Queue clearing loops for that Phase are disabled until the next Phase Red
Radio Corrected Time Based (RCTB) - A method of implementing coordination using a WWV Clock as the time standard.
Railroad A (RRA) - A special railroad preempt routine which, following Track Clearance, results in a Red Flash condition until the preempt ends.
Railroad B (RRB) - A special railroad preempt routine which, following Track Clearance, resumes Limited Service automatic operation, with selected Phases omitted, until the preempt ends.
Random Access Memory (RAM) - A read-write memory device in the 170E controller used to store userentered data as well as other data under program control.
Recall - A recurring demand for a Vehicle or Ped Phase set by program
Red Clearance - A clearance interval that follows the Yellow interval and prevents the next right-of-way Phase from going Green.
Red Revert - A Red interval timed by individual Vehicle Phases or Overlaps when they are set to go Green again immediately after terminating.
Reinitialization - The process of restoring the CPU RAM and/or 1000h NOVRAM to a known state.
Repoll - To request the current Time and Date from the WWV Clock to update the Real Time Clock.
Rest in Walk - see Pedestrian Recall/Rest in Walk
Right-of-Way - The right of a particular traffic movement to take precedence over others in the use of the roadway, indicated by a Green or Yellow signal.
Ring - A group of sequential, conflicting Phases. Typically Phases 1, 2, 3 and 4 comprise Ring A and
Phases 5, 6, 7 and 8 Ring B.
RRA - see Railroad A
RRB - see Railroad B
RRB Limited Service - A partial, automatic operation during Railroad 2 preempt where certain designated phases are served and all other phases are omitted. The portion of RR2 Preempt that allows service of any movement that does not cross the RR tracks, see also Railroad 2
Serve (a Phase) - To give right-of-way to a Phase.
Service - To give right-of-way to a Phase in response to a Call to that Phase. A phase is considered to be in service from the beginning of its Green interval until the end of its Red clearance time, if any.
Short power down - A loss of power for less than 2 seconds.
Simultaneous gap - When crossing the barrier, Phases in both rings must gap out together in order to terminate the Green interval.
Simultaneous termination - The exactly coincident Green to Yellow transition of a pair of concurrent Phases. A condition required for barrier crossing.

APPENDIX C - GLOSSARY OF TERMS AND ACRONYMS LACO 4E USERS MANUAL

Slave - A 170E controller running Coordination and receiving its Dial, Offset and sync information from the Master controller via direct interconnect.
Software Flash - A flash condition in which all outputs to the signals remain under program control in contrast to a flash condition caused by activation of the controller cabinet Flash relays.
Split - A measure of the fraction of a complete cycle devoted to each Phase.
Startup - Controller operation just following initial application of A. C. power after a long power down. Stop time - To suspend controller operation in the interval it is presently timing by means of external input or the 170E Front Panel Stop Time switch.
Supplemental phases - A Lead Phase and Lag Phase pair located in the same quadrant, for example phase1 and phase 2.
Sync pulse - The period of time that the Offset line is in a FALSE state.
System - A group of adjacent intersections that run under the same Coordination timing.
Table - Used in Coordination, a list of time-of-day OR calendar events or functions.
Termination - In general, the ending of a particular Phase. More specifically, termination can be thought of as the elapsed time beginning at the transition from Green-to-Yellow and continuing until any Red Clearance has timed.
Time based - A system to coordinate intersections not physically interconnected, but which instead relies on precisely synchronized clocks at each location.
Time space diagram - A special kind of graph showing the relative locations of a string of intersections and the time needed to traverse the intervening distances at a particular vehicle speed. It is used in the design of Coordination systems.
Time Of Day (TOD) - Referring to the actual time during the 24 hours in a day.
Track Clearance - The portion of RR Preempt that ensures clearance of traffic from the RR tracks before the train reaches the intersection.
True Max Termination - The condition for barrier crossing logically described as: [Ring A Max out or Gap out] and [Ring B Max out or Gap out].
True North - The actual geographic north, which may or may not be parallel with any street direction, see also phase north.
UART - Universal Asynchronous Receiver Transmitter. The comm processor by which the LACO-4E program communicates with external devices (WWV/GPS, Central System, other controllers, etc). Variable initial green - same as Added Green per Actuation.
Vehicle Extension - The continuation of Green time beyond minimum Green (in the presence of an opposing call) by means of vehicle actuations on the Phase presently timing.
Walk - Time during which "WALK" or walking person symbol is displayed.
Watch Dog Timer (WDT) - A software generated pulse stream output of the 170E controller, which is monitored by the CMU to detect controller failures. A pulse missing for a specified time causes a hardware flash condition.
WWV Clock - An electronic unit containing a radio receiver and a clock that is updated from broadcasts by the National Institute of Standards and Technology. The time is then transmitted to the 170E controller via serial communications port.
Yellow Change - The first interval following the Green right-of-way interval in which the signal indication for that Phase is Yellow.
Yellow Clearance - same as Yellow Change.
Yellow Ranging - A flag that allows the selected Phase to time a Yellow interval longer or shorter than the minimum and maximum times customarily enforced by the program for safety reasons.

ACRONYMS

ACIA - Asynchronous Communications Input Adapter
CMU - Conflict Monitor Unit
DOW -Day Of Week
DTA - Down Time Accumulator
EPROM - Erasable Programmable Read Only Memory
EV - Emergency Vehicle
FTA - Fully Traffic Actuated
LLA - Leading Left turn Arrow
LLT - Leading Left Turn
NOVRAM - NOn-Volatile Random Access Memory
PPB - Ped Push Button
PPLT - Protected Permissive Left Turn
PROM - Programmable Read Only Memory
RAM - Random Access Memory
RCTB - Radio Corrected Time Base
STA - Semi-Traffic Actuated
TOD - Time Of Day
UART - Universal Asynchronous Receiver Transmitter
WDT - Watch Dog Timer

APPENDIX D. TIMING SHEET CONVERSIONS

D1. LACO-1R to LACO-4E
D2. LACO-3 to LACO-4E

LACO-1R TO LACO-4E			Page
PACO-4E			
Page	LACO-1R	1	Phase Timing
1	Phase Timing	1	Walk
1	Minimum Walk	1	Flashing Don't Walk
1	Flashing Don't Walk	1	Minimum Green
1	Minimum Green	1	Queue Maximum
1	Queue Maximum	1	Added Green per Actuation
1	Added Green/Actuation	1	Vehicle Extension
1	Vehicle Extension	1	See Note at end of Appendix D2
1	Maximum Gap	1	Minimum Gap
1	Minimum Gap	1	Max Green 1 (Free)
1	Max Extension 1 (Free)	1	Max Green 2 (Coordination)
1	Max Extension 2 (Coord)	6	Plan 1 Offset
1	Offset 1/Dial 1	6	Plan 2 Offset
1	Offset 1/Dial 2	6	Plan 3 Offset
1	Offset 1/Dial 3	6	Plan 4 Offset
1	Offset 2/Dial 1	6	Plan 5 Offset
1	Offset 2/Dial 2	6	Plan 6 Offset
1	Offset 2/Dial 3	6	Plan 7 Offset
1	Offset 3/Dial 1	6	Plan 8 Offset
1	Offset 3/Dial 2	6	Plan 9 Offset
1	Offset 3/Dial 3	1	See Note at end of Appendix D2
1	Reduce 0.1 Sec. Every...	1	Yellow Clearance
1	Yellow	1	Red Clearance
1	Red Clearance	1	Max Added Green (per phase)
1	Max Added Green (for all phases)	1	Red Revert
1	Red Revert	5	Preemption
1	Preemption	5	Railroad Select (0, 1, 2, or 3)
1	RR Select (0, 1, 2)	5	Track Clearance
1	Track Clearance	5	All Red Time After Railroad Flash
1	RR Red	5	Limited Service Max Time
1	RR2 Maximum (Minutes)	5	EV-A Delay
1	EV-A Delay	5	EV-A Clearance
1	EV-A Clearance	5	EV-B Delay
1	EV-B Delay	5	EV-B Clearance
1	EV-B Clearance	5	EV-C Cleararance
1	EV-C Delay	5	EV-D Delay
1	EV-C Clearance		
1	EV-D Delay		

LACO-1R TO LACO-4E	5	EV-D Clearance	
1	EV-D Clearance	5	Maximum (per EV)
1	EV Maximum (Seconds) (for all EV's)	2	Configuration
1	Phase Function Flags	2	Permitted Phases (Phase Function Flags)
1	Phases Permitted	2	Red Lock (Phase Function Flags)
1	Red Lock	2	Red and Yellow Lock (Phase Function Flags)
1	Red \& Yellow Lock	2	Minimum Vehicle Recall (Phase Function Flags)
1	Minimum Vehicle Recall	2	Ped Recall (Street Configuration Flags)
1	Ped Recall/Rest In Walk	2	Ped 2/4/6/8/A/B Load Switch (Street Configuration Flags)
1	Pedestrian Phases	2	Rest In Red (Phase Function Flags)
1	Rest In Red	2	STA Mode (Street Configuration Flags)
1	Semi Traffic Actuated Mode	2	Double Entry (Phase Function Flags)
1	Double Entry	2	Maximum Vehicle Recall (Phase Function Flags)
1	Maximum Vehicle Recall	4	Overlap A Parents (Normal, RR, EV)
1	Overlap A	4	Overlap B Parents (Normal, RR, EV)
1	Overlap B	2	Barrie Recall (Phase Function Flags)
1	Barrier Recall	2	Rest In Green (Phase Function Flags)
1	Rest In Green	2	Yellow Startup Phases (Phase Function Flags)
1	Yellow Start Up	2	Prot/Perm Left Turn (Phase Function Flags)
1	Protected/Permissive Left Turn		
1	Lag Phase Flags	2	Lag Phases (Free) (Phase Function Flags)
1	Lag Free	2	Lag Phases (Manual Control Configuration)
1	"	10	Lagging Phases - Coordination Attributes (Plans 1/2/3)
1	Lag Dial 1	10	Lagging Phases - Coordination Attributes (Plans 4/5/6)
1	Lag Dial 2	10	Lagging Phases - Coordination Attributes (Plans 7/8/9)
1	Lag Dial 3	3	Detector Assignments
2	Detector Assignments	3	Delay
2	Delay	3	Extended Call
2	Extended Call	3	Phase Flags (for all detectors)
2	Call (for programmable detectors)	3	Attribute Flags (for all detectors)
2	Yellow Disconnect (for programmable detectors)	3	Attribute Flags (for all detectors)
2	Queue Clearing (for programmable detectors)	6	Coordination 1/2/3
3	WWV Time-Based Coordination	2	Communications Options (Configuration)
3	Interconnect Select		NO EQUIVALENT
3	Set Maximum Width	6	System Manual
3	Set Minimum Width	6	Local Manual
3	System Manual		NO EQUIVALENT
3	Local Manual		
3	Function 6		

Appendix D1. LACO-1R to LACO-4E

LACO-1R TO LACO-4E			
3	Minimum Cycle	6	Minimum Cycle Length
3	Maximum Cycle	6	Maximum Cycle Length
3	Dial 1 Intervals	6	Plan 1/2/3 Intervals
3	Dial 2 Intervals	6	Plan 4/5/6 Intervals
3	Dial 3 Intervals	6	Plan 7/8/9 Intervals
3	WWV Time-Based Coordination	6	Coordination Function Flags
3	Dial 1 Force Off	6	Plan 1/2/3 Force Off
3	Dial 1 Hold	6	Plan 1/2/3 Hold
3	Dial 1 Ped Rstrict	6	Plan 1/2/3 Ped Restrict
3	Dial 1 Call	6	Plan 1/2/3 Call
3	Dial 2 Force Off	6	Plan 4/5/6 Force Off
3	Dial 2 Hold	6	Plan 4/5/6 Hold
3	Dial 2 Ped Rstrict	6	Plan 4/5/6 Ped Restrict
3	Dial 2 Call	6	Plan 4/5/6 Call
3	Dial 3 Force Off	6	Plan 7/8/9 Force Off
3	Dial 3 Hold	6	Plan 7/8/9 Hold
3	Dial 3 Ped Rstrict	6	Plan 7/8/9 Ped Restrict
3	Dial 3 Call	6	Plan 7/8/9 Call
4	Setting Event Table 9 Data		NO EQUIVALENT
5	WWV Time-Base Event Tables	11	Coordination Tables
5	Table 0 - Default TOD	11	Table 0 - Default TOD
5	Table 1-(TOD)	11	Table 1 - (TOD)
5	Table 2-(TOD)	11	Table 2 - (TOD)
5	Table 3-(TOD)	11	Table 3-(TOD)
5	Table 4 - Floating Holidays	11	Table 6 - Floating Holidays
5	Table 5-Annual Events	11	Table 5-Annual Events
5	Table 6 - Annual Events		NO EQUIVALENT
5	Table 7 - Annual Events		NO EQUIVALENT
6	WWV Time-Base Annual Tables		
6	Table 8 -Exception Days	11	Table 7 - Exception Days
6	Table 9 - Exception Times		NO EQUIVALENT
6	Special Function Table	10	Coordination Attributes
6	(Green) Calling Phases	2	Green Calling Phases
6	(Green) Calling To Phases	2	Green Calling-To Phases
6	(Yellow) Calling Phases	2	NO EQUIVALENT
6	(Yellow) Calling To Phases	2	NO EQUIVALENT
6	Auxiliary Ovlp A Output	4	Load Switch Assignment
6	Mid-Block Ped Crossing	2	

Appendix D1. LACO-1R to LACO-4E

LACO-1R TO LACO-4E			
6	Driveway Flash	2	
6	Green Extension		NO EQUIVALENT
6	Sequential Ped	2	
6	EV-A Clearance Phases	5	EV-A Clearance Phases
6	EV-B Clearance Phases	5	EV-B Clearance Phases
6	EV-C Clearance Phases	5	EV-C Clearance Phases
6	EV-D Clearance Phases	5	EV-D Clearance Phases
6	Track Clearance Phases	5	Track Clearance
6	Limited Service Phases	5	Limited Service
6	Coordination Free Time (Seconds) After Preempt	5	Free Time After Preempt
6	Green Rest Delay Time (Seconds)	1	Green Rest Delay Time (Miscellaneous Timers)
6	Railroad Routine Select	5	Railroad Select (1. 2, or 3)
6	Manual Control	2	Recall Type (Manual Control Configuration)
6	Phase Omits	10	Coordination Attributes
6	Phase Omit for Dial 1	10	Omitted Phases (Plan 1/2/3)
6	Phase Omit for Dial 2	10	Omitted Phases (Plan 4/5/6)
6	Phase Omit for Dial 3	10	Omitted Phases (Plan 7/8/9)
6	Additional Overlaps	4	Overlaps
6	Aux File 2 Color Ovip C	4	Load Switch Assignment
6	Aux File 2 Color Ovlp D	4	Load Switch Assignment
6	Phase 7 Load Sw. 3 Color Ovip E	4	Load Switch Assignment
6	Overlap E Green Omit	4	Green Omit Parents

Appendix D1. LACO-1R to LACO-4E

LACO-3 to LACO-4E			
Page	LACO-3		Page
1	Phase Timing	1	Phase Timing
1	Minimum Walk	1	Walk
1	Flashing Don't Walk	1	Flashing Don't Walk
1	Minimum Green	1	Minimum Green
1	Queue Maximum	1	Queue Maximum
1	Added Green/Actuation	1	Added Green per Actuation
1	Vehicle Extension	1	Vehicle Extension
1	Maximum Gap	1	See Note at end of Appendix D2
1	Minimum Gap	1	Minimum Gap
1	Max Extension 1 (Free)	1	Max Green 1 (Free)
1	Max Extension 2 (Coord)	1	Max Green 2 (Coordination)
1	Ovlp Green Extension (for each overlap)	4	Ovlp Green Extension (for each overlap)
1	Ovlp Yellow Clearance (for each overlap)	4	Ovlp Yellow Clearance (for each overlap)
1	Ovlp Red Clearance (for each overlap)	4	Ovlp Red Clearance (for each overlap)
1	Reduce 0.1 Sec. Every...	1	See Note at end of Appendix D2
1	Yellow	1	Yellow Clearance
1	Red Clearance	1	Red Clearance
1	Green Rest Delay	1	Green Rest Delay Time (Miscellaneous Timers)
1	Red Rest Delay	1	Red Rest Delay Time (Miscellaneous Timers)
1	Max Added Green (for all phases)	1	Max Added Green Time (per phase)
1	Red Revert	1	Red Revert Time
1	Preemption	5	Preemption
1	RR Select (0, 1, 2)	5	Railroad Select (0, 1, 2, or 3)
1	RR Track Clearance	5	Track Clearance
1	RR1 All Red	5	All Red Time After Railroad Flash
1	RR2 Maximum (Minutes)	5	Limited Service Max Time
1	Free Time After Preempt	5	Free Time After Preempt
1	EV-A Delay	5	EV-A Delay
1	EV-A Clearance	5	EV-A Clearance
1	EV-B Delay	5	EV-B Delay
1	EV-B Clearance	5	EV-B Clearance
1	EV-C Delay	5	EV-C Delay
1	EV-C Clearance	5	EVC Clearance
1	EV-D Delay	5	EV-D Delay
1	EV-D Clearance	5	EV-D Clearance
1	EV Maximum (Seconds) (for all EV's)	5	Maximum (per EV)
1	EV-A Clearance Phases	5	EV-A Clearance Phases

Appendix D2. LACO-3 to LACO-4E

LACO-3 to LACO-4E

1	EV-B Clearance Phases	5	EV-B Clearance Phases
1	EV-C Clearance Phases	5	EV-C Clearance Phases
1	EV-D Clearance Phases	5	EV-D Clearance Phases
1	RR Track Clear	5	Track Clearance
1	RR2 Ltd Service	5	Limited Service
1	RR1 Exit Phase	5	Railroad Exit
1	Railroad Routine Select	5	Railroad Select (1. 2, or 3)
1	Phase Function Flags	2	Configuration
1	Phases Permitted	2	Permitted Phases (Phase Function Flags)
1	Red Lock	2	Red Lock (Phase Function Flags)
1	Red \& Yellow Lock	2	Red and Yellow Lock (Phase Function Flags)
1	Minimum Vehicle Recall	2	Minimum Vehicle Recall (Phase Function Flags)
1	Pedestrian Recall \& Rest In Walk	2	Ped Recall (Street Configuration Flags)
1	Green Rest	2	Rest In Green (Phase Function Flags)
1	Red Rest	2	Rest In Red (Phase Function Flags)
1	Semi Traffic Actuated Mode	2	STA Mode (Street Configuration Flags)
1	Double Entry	2	Double Entry (Phase Function Flags)
1	Maximum Vehicle Recall	2	Maximum Vehicle Recall (Phase Function Flags)
1	Restricted Phases	4	Restricted Phases (Phase Function Flags)
1	Protected/Permissive Left Turn	2	Prot/Perm Left Turn (Phase Function Flags)
1	First Phases After Start Up	2	First Phases (after setup) (Phase Function Flags)
1	Barrier Recall	2	Barrier Recall (Phase Function Flags)
1	Yellow Start Up	2	Yellow Startup Phases (Phase Function Flags)
1	Overlap Yellow Start Up	2	Yellow Startup Overlaps (Phase Function Flags)
1	Lag Phase Flags		
1	Lag Free	2	Lag Phases (Free) (Phase Function Flags)
1	" "	2	Lag Phases (Manual Control Configuration)
1	Lag Dial 1	10	Lagging Phases - Coordination Attributes (Plans 1/2/3)
1	Lag Dial 2	10	Lagging Phases - Coordination Attributes (Plans 4/5/6)
1	Lag Dial 3	10	Lagging Phases - Coordination Attributes (Plans 7/8/9)
2	Detector Assignments	3	Detector Assignments
2	All timing entries same as LACO-4E	3	All timing entries same as LACO-3
3	WWV Time-Based Coordination	6	Coordination
3	System Sync Width		NO EQUIVALENT
3	Set Maximum Width		NO EQUIVALENT
3	Set Minimum Width		NO EQUIVALENT
3	System Manual	6	System Manual
3	Local Manual	6	Local Manual

Appendix D2. LACO-3 to LACO-4E

LACO-3 to LACO-4E

3	Function 6		NO EQUIVALENT
3	Minimum Cycle	6	Minimum Cycle Length
3	Maximum Cycle	6	Maximum Cycle Length
3	Dial 1 Intervals	6	Plan 1/2/3 Intervals
3	Dial 2 Intervals	6	Plan 4/5/6 Intervals
3	Dial 3 Intervals	6	Plan 7/8/9 Intervals
3	WWV Time-Based Coordination	6	Coordination Function Flags
3	Dial 1 Force Off	6	Plan 1/2/3 Force Off
3	Dial 1 Hold	6	Plan 1/2/3 Hold
3	Dial 1 Ped Restrict	6	Plan 1/2/3 Ped Restrict
3	Dial 1 Call	6	Plan 1/2/3 Call
3	Dial 2 Force Off	6	Plan 4/5/6 Force Off
3	Dial 2 Hold	6	Plan 4/5/6 Hold
3	Dial 2 Ped Restrict	6	Plan 4/5/6 Ped Restrict
3	Dial 2 Call	6	Plan 4/5/6 Call
3	Dial 3 Force Off	6	Plan 7/8/9 Force Off
3	Dial 3 Hold	6	Plan 7/8/9 Hold
3	Dial 3 Ped Restrict	6	Plan 7/8/9 Ped Restrict
3	Dial 3 Call	6	Plan 7/8/9 Call
4	Special Functions		
4	Overlap Phase Flags (for each overlap)	4	Normal Parents (for each overlap)
4	Overlap Green Omit Flags (for each overlap)	4	Green Omit Parents (for each overlap)
4	Railroad Preempt Overlap Flags (for each overlap)	4	RR Preempt Parents (for each overlap)
4	Emergency Vehicle Preempt Overlap Flags (for each overlap)	4	EV Preempt Parents (for each overlap)
4	Load Switch Assignment (for each overlap)	4	Load Switch Assignment (for each overlap)
4	User Flag Options	2	User Flags (Miscellaneous Flags)
4	Associated Phase Recall (for each phase)	2	Associated Phase Recall (for each phase) (Miscellaneous Flags)
4	Phase Driveway Flash	2	Driveway Flash (Street Configuration Flags)
4	Phase Yellow Ranging	2	Yellow Ranging Phase (Miscellaneous Flags)
4	Overlap Driveway Flash	2	Overlap Driveway Flash (Street Configuration Flags)
4	Overlap Yellow Ranging	2	Yellow Ranging Overlap (Miscellaneous Flags)
4	Ped 2/4/6/8 Load Switch Overlap	2	Load Switch Assignment (for each overlap)
5	Event Tables	11	Coordination Tables
5	Table 0 - Default TOD	11	Table 0 - Default TOD
5	Table 1-(TOD)	11	Table 1 - (TOD)
5	Table 2-(TOD)	11	Table 2 - (TOD)
5	Table 3-(TOD)	11	Table 3-(TOD)
5	Table 4 - (TOD)	11	Table 4 - (TOD)

Appendix D2. LACO-3 to LACO-4E

LACO-3 to LACO-4E			
5	Table 5 - Slave Mode Table		NO EQUIVALENT
5	Table 6 - Floating Holidays	11	Table 6 - Floating Holidays
5	Table 7 - Exception Days	11	Table 7 - Exception Days
6	Annual Tables		
6	Table 8 - Annual Events	11	Table 5 - Annual Events
6	Table 9 - Annual Events		NO EQUUIVALENT
6	Offset 1/Dia 1	6	Plan 1 Offset
6	Offset 1/Dial 2	6	Plan 2 Offset
6	Offset 1/Dial 3	6	Plan 3 Offset
6	Offset 2/Dial 1	6	Plan 4 Offset
6	Offset 2/Dial 2	6	Plan 5 Offset
6	Offset 2/Dial 3	6	Plan 6 Offset
6	Offset 3/Dial 1	6	Plan 7 Offset
6	Offset 3/Dial 2	6	Plan 8 Offset
6	Offset 3/Dial 3	6	Plan 9 Offset
1	Communications Assignments	2	Communications Options (Configuration)

NOTE:
LACO-4E takes a slightly different approach from LACO-1R and LACO-3 for configuring Gap Reduction (a.k.a. Volume Density Timing). Both LACO-1R and LACO-3 ask the user to set Minimum Gap, Maximum Gap, Vehicle Extension and Reduce . 1 Second Every... parameters and the program internally generates the Time Before Reduction and Time to Reduce times internally from these parameters. LACO-4E, on the other hand, asks the user to set Minimum Gap, Maximum Gap, Vehicle Extension, Time to Reduce and Time Before Reduction. From these parameters, the program internally generates the "Reduce . 1 Second Every..." time.

APPENDIX E. I/O MAPPINGS

E1. LACO-4E Input Function Map
E2. LACO-4E Output Function Map
E3. Caltrans 332 Cabinet "I" Input File Layout
E4. Caltrans 332 Cabinet "J" Input File Layout
E5. Caltrans 336 Cabinet Input File Layout
E6. L. A. County 337 Cabinet Input File Layout
E7. Caltrans 332/336 Cabinet Output File Layout
E8. Caltrans 337 Cabinet Output File Layout
E9. Caltrans Auxiliary Output File Layout
E10. C1 Connector Map
E11. LACO-4E System Detector Cross Reference
E12. C5 Connector Map
E13. Cabling Information For AB3418E and BSP Communications

E1. LACO-4E Input Function Map

$\downarrow^{\text {Firmware }}$ Address	8	7	6	5	4	3	2	1	$\downarrow^{\text {Hardware }} \text { Adress }$
080	$\begin{gathered} \text { 8J6L } \\ \text { C1 Pin-46 } \\ \text { Logic - } 08 \end{gathered}$	$\begin{gathered} \text { 4I6L } \\ \text { C1 Pin- } 45 \\ \text { Logic - } 07 \end{gathered}$	$\begin{gathered} \text { 6J2L } \\ \text { C1 Pin-44 } \\ \text { Logic - } 06 \end{gathered}$	$\begin{gathered} \text { 212L } \\ \text { C1 Pin-43 } \\ \text { Logic - } 05 \end{gathered}$	$\begin{gathered} 8 \mathrm{~J} 6 \mathrm{U} \\ \text { C1 Pin-42 } \\ \text { Logic - } 04 \end{gathered}$	$\begin{gathered} 416 \mathrm{U} \\ \text { C1 Pin-41 } \\ \text { Logic- } 03 \end{gathered}$	$\begin{gathered} \text { 6J2U } \\ \text { C1 Pin-40 } \\ \text { Logic-02 } \end{gathered}$	$\begin{gathered} \text { 212U } \\ \text { C1 Pin - } 39 \\ \text { Logic }-01 \end{gathered}$	7401
081	Cabinet Door Open C1 Pin - 54 Logic - 18	$\begin{aligned} & \text { MAN ENA } \\ & \text { PED B } \\ & \text { C1 Pin }-53 \\ & \text { Logic - } 17 \end{aligned}$	$\begin{gathered} \text { RR B } \\ \text { C1 Pin }-52 \\ \text { Logic - } 16 \end{gathered}$	RR A Offset Timing Pin -51 Logic - 15	$\begin{aligned} & 8 \mathrm{~B} 8 \\ & \text { C1 Pin }-50 \\ & \text { Logic }-14 \end{aligned}$	$\begin{gathered} 418 \\ \text { C1 Pin - } 49 \\ \text { Logic - } 13 \end{gathered}$	$\begin{gathered} \text { 6J4 } \\ \text { C1 Pin-48 } \\ \text { Logic - } 12 \end{gathered}$	$\begin{gathered} 214 \\ \text { C1 Pin-47 } \\ \text { Logic- } 11 \end{gathered}$	7402
082	$\begin{gathered} 319 \mathrm{~L} \\ \text { C1 Pin-62 } \\ \text { Logic-28 } \end{gathered}$	$\begin{gathered} \text { 7J9L } \\ \text { C1 Pin-61 } \\ \text { Logic - } 27 \end{gathered}$	$\begin{gathered} 119 U \\ \text { C1 Pin - } 60 \\ \text { Logic }-26 \end{gathered}$	$\begin{gathered} \text { 5J9U } \\ \text { C1 Pin-59 } \\ \text { Logic - } 25 \end{gathered}$	$\begin{gathered} 315 \\ \text { C1 Pin - } 58 \\ \text { Logic - } 24 \end{gathered}$	$\begin{aligned} & 7 \mathrm{~J} 5 \\ & \text { C1 Pin }-57 \\ & \text { Logic- } 23 \end{aligned}$	$\begin{gathered} 111 \\ \text { C1 Pin - } 56 \\ \text { Logic - } 22 \end{gathered}$	$\begin{gathered} \text { 5JI } \\ \text { C1 Pin-55 } \\ \text { Logic- }-21 \end{gathered}$	7403
083	$\begin{gathered} 8 \mathrm{~J} 7 \mathrm{U} \\ \text { C1 Pin }-66 \\ \text { Logic }-38 \end{gathered}$	$\begin{gathered} \text { 4I7U } \\ \text { C1 Pin-65 } \\ \text { Logic - } 37 \end{gathered}$	$\begin{gathered} 6 J 3 U \\ \text { C1 Pin }-64 \\ \text { Logic }-36 \end{gathered}$	$\begin{gathered} 213 \mathrm{U} \\ \text { C1 Pin }-63 \\ \text { Logic }-35 \end{gathered}$	unused	unused	unused	unused	7404
084	$\begin{gathered} \text { EV D } \\ \text { C1 Pin-74 } \\ \text { Logic-48 } \end{gathered}$	$\begin{gathered} \text { EV C } \\ \text { C1 Pin - } 73 \\ \text { Logic - } 47 \end{gathered}$	$\begin{gathered} \text { EV B } \\ \text { C1 Pin - } 72 \\ \text { Logic - } 46 \end{gathered}$	$\begin{aligned} & \text { EV A } \\ & \text { C1 Pin }-71 \\ & \text { Logic - } 45 \end{aligned}$	$\begin{gathered} 8 \text { PPB } \\ \text { C1 Pin - } 70 \\ \text { Logic - } 44 \end{gathered}$	$\begin{gathered} 4 \text { PPB } \\ \text { C1 Pin - } 69 \\ \text { Logic }-43 \end{gathered}$	$\begin{gathered} 6 \text { PPB } \\ \text { C1 Pin }-68 \\ \text { Logic - } 42 \end{gathered}$	$\begin{gathered} 2 \mathrm{PPB} \\ \text { C1 Pin }-67 \\ \text { Logic }-41 \end{gathered}$	7405
085	EXTERNAL STOP TIME C1 Pin- 82 Logic- 58	FLASH SENSE C1 Pin - 81 Logic - 57	$\begin{aligned} & \text { MAN ADV } \\ & \text { PED A } \\ & \text { C1 Pin - } 80 \\ & \text { Logic - } 56 \end{aligned}$	$\begin{gathered} 8 \mathrm{~J} 7 \mathrm{~L} \\ \text { C1 Pin - } 79 \\ \text { Logic - } 55 \end{gathered}$	$\begin{gathered} 417 \mathrm{~L} \\ \text { C1 Pin-78 } \\ \text { Logic- } 54 \end{gathered}$	$\begin{gathered} \text { 6J3L } \\ \text { C1 Pin- } 77 \\ \text { Logic- } 53 \end{gathered}$	$\begin{aligned} & 213 \mathrm{~L} \\ & \text { C1 Pin - } 76 \\ & \text { Logic - } 52 \end{aligned}$	Police Panel Door Open C1 Pin - 75 Logic - 51	7406
086	unused	unused	FRONT PANEL STOP TIME Logic - 66	Internal Use 7407					

The first line in each block indicates the LACO-4E default input function. The lines in italics show optional input functions. The next to the last line shows the associated C1 pin and the last line shows the Logic pin number used for Programmable Logic data entry.

E2. LACO-4E Output Function Map

$\downarrow^{\text {Firmware }}$ Address	8	7	6	5	4	3	2	1	$\downarrow^{\text {Adrass }}$
090	$\begin{gathered} \varnothing 3 \text { GREEN } \\ \text { C1 Pin - } 9 \\ \text { Logic - } 108 \end{gathered}$	$\begin{gathered} \varnothing 3 \text { YELLOW } \\ \text { C1 Pin - } 8 \\ \text { Logic - } 107 \end{gathered}$	Ø3 RED C1 Pin - 7 Logic - 106	$\varnothing 4$ GREEN C1 Pin-6 Logic - 105	$\begin{gathered} \varnothing 4 \text { YELLOW } \\ \text { C1 Pin - } 5 \\ \text { Logic - } 104 \end{gathered}$	$\varnothing 4$ RED C1 Pin-4 Logic - 103	$\begin{gathered} \text { Ø4 WALK } \\ \text { C1 Pin }-3 \\ \text { Logic - } 102 \end{gathered}$	Ø4 DWALK C1 Pin-2 Logic - 101	7401
091	$\varnothing 1$ GREEN C1 Pin - 18 Logic - 118	ø1 YELLOW C1 Pin - 17 Logic - 117	$\begin{gathered} \varnothing 1 \text { RED } \\ \text { C1 Pin-16 } \\ \text { Logic - } 116 \end{gathered}$	$\varnothing 2$ GREEN C1 Pin - 15 Logic - 115	Ø2 YELLOW C1 Pin - 13 Logic - 114	Ø2 RED C1 Pin - 12 Logic - 113	Ø2 WALK C1 Pin - 11 Logic - 112	Ø2 DWALK C1 Pin - 10 Logic - 111	7402
092	© 7 GREEN C1 Pin-26 Logic - 128	Ø7 YELLOW C1 Pin - 25 Logic - 127	$\varnothing 7$ RED C1 Pin-24 Logic - 126	$\varnothing 8$ GREEN C1 Pin - 23 Logic - 125	Ø8 YELLOW C1 Pin- 22 Logic - 124	$\begin{gathered} \text { Ø8 RED } \\ \text { C1 Pin - } 21 \\ \text { Logic - } 123 \end{gathered}$	Ø8 WALK C1 Pin - 20 Logic - 122	Ø8 DWALK C1 Pin - 19 Logic - 121	7403
093	Ø5 GREEN C1 Pin - 34 Logic - 138	$\begin{gathered} \text { C5 YELLOW } \\ \text { C1 Pin }-33 \\ \text { Logic }-137 \end{gathered}$	$\begin{aligned} & \varnothing 5 \text { RED } \\ & \text { C1 Pin - } 32 \\ & \text { Logic }-136 \end{aligned}$	ø6 GREEN C1 Pin - 31 Logic - 135	$\varnothing 6$ YELLOW C1 Pin - 30 Logic - 134	$\begin{gathered} \quad \varnothing 6 \text { RED } \\ \text { C1 Pin - } 29 \\ \text { Logic - } 133 \end{gathered}$	Ø6 WALK C1 Pin- 28 Logic - 132	Ø6 DWALK C1 Pin - 27 Logic - 131	7404
094	WATCHDOG C1 Pin - 103 Logic - 148	$\begin{aligned} & \text { DETECTOR } \\ & \text { RESET } \\ & \text { C1 Pin - } 102 \\ & \text { Logic }-147 \end{aligned}$	AUX 3 YELLOW Preempt Ind C1 Pin-101 Logic - 146	AUX 6 YELLOW C1 Pin-100 Logic - 145	OVERLAP B YELLOW C1 Pin- 38 Logic - 144	OVERLAP A YELLOW C1 Pin - 37 Logic - 143	OVERLAP B GREEN C1 Pin- 36 Logic - 142	OVERLAP A GREEN C1 Pin- 35 Logic - 141	7405
095	AUX 4 GREEN OVERLAP E C1 Pin -90 Logic-158	AUX 4 YELLOW OVERLAP E C1 Pin- 89 Logic - 157	AUX 4 RED OVERLAP E C1 Pin - 88 Logic - 156	AUX 5 GREEN OVERLAP F C1 Pin- 87 Logic - 155	AUX 5 YELLOW OVERLAP F C1 Pin - 86 Logic - 154	AUX 5 RED OVERLAP F C1 Pin - 85 Logic - 153	AUX 6 GREEN C1 Pin - 84 Logic - 152	$\begin{gathered} \text { AUX } 6 \\ \text { RED } \\ \text { C1 Pin - } 83 \\ \text { Logic - } 151 \end{gathered}$	7406
096	AUX 1 GREEN OVERLAP C C1 Pin- 99 Logic - 168	AUX 1 YELLOW OVERLAP C C1 Pin - 98 Logic - 167	AUX 1 RED OVERLAP C C1 Pin - 97 Logic - 166	AUX 2 GREEN OVERLAP D C1 Pin-96 Logic - 165	AUX 2 YELLOW OVERLAP D C1 Pin-95 Logic - 164	AUX 2 RED OVERLAP D C1 Pin-94 Logic-163	AUX 3 GREEN Aux Output C1 Pin - 93 Logic - 162	$\begin{gathered} \text { AUX } 3 \\ \text { RED } \\ \text { C1 Pin - } 91 \\ \text { Logic - } 161 \end{gathered}$	7407

The first line (or as many as three lines) in each block indicates the LACO-4E default output function. The next to the last line shows the associated C 1 pin and the last line shows the Logic pin number used for Programmable Logic data entry.

(Upper)

Default Alternate C1 Pin

The Caltrans 332 Cabinet "I" Input File layout is shown above and the format of each slot is shown to the left. The Input File is divided into an Upper slot and a Lower slot. The first row in each slot indicates the LACO-4E default function. An alternate function, if available, is shown on the next row in italics. The slot's associated C1 pin number is on the bottom row. Slot 10 on the Input File is not wired. Slots $1,4,5$ and 8 have the upper slot output wires connected with jumpers to the lower slot's outputs (pins F and W).

(Upper)
Default
Alternate
C1 Pin
(Lower)
Default
Alternate
C1 Pin

The Caltrans 332 Cabinet "l" Input File layout is shown above and the format of each slot is shown to the left. The Input File is divided into an Upper slot and a Lower slot. The first row in each slot indicates the LACO-4E default function. An alternate function, if available, is shown on the next row in italics. The slot's associated C1 pin number is on the bottom row. Slot 10 on the Input File is not wired. Slots 1, 4, 5 and 8 have the upper slot output wires connected with jumpers to the lower slot's outputs (pins F and W).

E4. Caltrans 332 Cabinet "J" Input File Layout

(Upper)
Default Alternate

C1 Pin
The Caltrans 336 Cabinet Input File layout is shown above and the format of each slot is shown to the left. The Input File is divided into an Upper slot and a Lower slot. The first row in each slot indicates the Caltrans default function. An alternate function, if available, is shown on the next row in italics. The slot's associated C 1 pin number is on the bottom row.
(Lower)
Default Alternate C1 Pin

(Upper)
Default
Alternate
C1 Pin
(Lower)
Default
Alternate
C1 Pin

The L. A. County 337 Cabinet Input File layout is shown above and the format of each slot is shown to the left. The Input File is divided into an Upper slot and a Lower slot. The first row in each slot indicates the LACO-4E default function, with its associated C1 pin number on the second row. An alternate function, if available, is shown on the next row in italics. The 337 Input File has only 11 slots. The lower channel of slot 8 has no C 1 pin wired to it. Consult the 337 Cabinet prints provided by the manufacturer for details on which (if any) C1 pins are connected to each slot's "SP" (spare) terminal.

E6. L. A. County 337 Cabinet Input File Layout

LS = Load Switch

LS = Load Switch

LS1	LS2	LS3	LS4	LS5	LS6
AUX1 Red C1-97	$\varnothing 2$ Red C1-12	Ø4 Red C1-4	$\begin{gathered} \varnothing 6 \text { Red } \\ \text { C1-29 } \end{gathered}$	$\begin{aligned} & \varnothing 2 \text { DWALK } \\ & \text { C1-10 } \end{aligned}$	$\begin{gathered} \varnothing 4 \text { DWALK } \\ \text { C1-2 } \end{gathered}$
AUX1 Yellow C1-98	Ø2 Yellow C1-13	Ø4 Yellow C1-5	$\begin{gathered} \varnothing 6 \text { Yellow } \\ \text { C1-30 } \end{gathered}$	$\begin{gathered} \text { Ø6 DWALK } \\ \text { C1-27 } \end{gathered}$	$\begin{gathered} \varnothing 6 \text { WALK } \\ \text { C1-28 } \end{gathered}$
AUX1 Green C1-99	$\begin{gathered} \varnothing 2 \text { Green } \\ \text { C1-15 } \end{gathered}$	$\varnothing 4$ Green C1-6	$\begin{gathered} \text { Ø6 Green } \\ \text { C1-31 } \end{gathered}$	$\begin{gathered} \varnothing 2 \text { WALK } \\ \text { C1-11 } \end{gathered}$	$\varnothing 4$ WALK C1-3

E8. Caltrans 337 Cabinet Output File Layout

LS = Load Switch

LS1	LS2	LS3	LS4	LS5	LS6
AUX1 Red C1-97	AUX2 Red C1-94	AUX3 Red C1-91	AUX4 Red C1-88	AUX5 Red C1-85	AUX6 Red C1-83
AUX1 Yellow C1-98	AUX2 Yellow C1-95	AUX3 Yellow C1-101	AUX4 Yellow C1-89	AUX5 Yellow C1-86	AUX6 Yellow C1-100
AUX1 Green C1-99	AUX2 Green C1-96	AUX3 Green C1-93	AUX4 Green C1-90	AUX5 Green C1-87	AUX6 Green C1-84

E9. Caltrans Auxiliary Output File Layout

C1	Function	C1	Function	C1	Function	C1	Function
1	Logic Ground	27	6 Ped Don't Walk	53	Manual Enable (PedB)	79	Det J7 Lower
2	4 Ped Don't Walk	28	6 Ped Walk	54	Cabinet Door Open	80	Manual Advance (PedA)
3	4 Ped Walk	29	Phase 6 Red	55	Det J1 Both	81	Flash Sense
4	Phase 4 Red	30	Phase 6 Yellow	56	Det I1 Both	82	Ext. Stop Time
5	Phase 4 Yellow	31	Phase 6 Green	57	Det J5 Both	83	Aux6 Red
6	Phase 4 Green	32	Phase 5 Red	58	Det 15 Both	84	Aux6 Green
7	Phase 3 Red	33	Phase 5 Yellow	59	Det J9 Upper	85	Overlap C Red
8	Phase 3 Yellow	34	Phase 5 Green	60	Det 19 Upper	86	Overlap C Yellow
9	Phase 3 Green	35	Overlap A Green	61	Det J9 Lower	87	Overlap C Green
10	2 Ped Don't Walk	36	Overlap B Green	62	Det 19 Lower	88	Overlap D Red
11	2 Ped Walk	37	Overlap A Yellow	63	Det I3 Upper	89	Overlap D Yellow
12	Phase 2 Red	38	Overlap B Yellow	64	Det J3 Upper	90	Overlap D Green
13	Phase 2 Yellow	39	Det 12 Upper	65	Det 17 Upper	91	Aux3 Red
14	Logic Ground	40	Det J2 Upper	66	Det J7 Upper	92	Logic Ground
15	Phase 2 Green	41	Det 16 Upper	67	2 Ped Pushbutton	93	Aux3 Green (TOD Output)
16	Phase 1 Red	42	Det J6 Upper	68	6 Ped Pushbutton	94	Overlap E Red
17	Phase 1 Yellow	43	Det I2 Lower	69	4 Ped Pushbutton	95	Overlap E Yellow
18	Phase 1 Green	44	Det J2 Lower	70	8 Ped Pushbutton	96	Overlap E Green
19	8 Ped Don't Walk	45	Det 16 Lower	71	EV A	97	Overlap F Red
20	8 Ped Walk	46	Det J6 Lower	72	EV B	98	Overlap F Yellow
21	Phase 8 Red	47	Det 14 Both	73	EV C	99	Overlap F Green
22	Phase 8 Yellow	48	Det J4 Both	74	EV D	100	Aux6 Yellow
23	Phase 8 Green	49	Det 18 Both	75	Police Panel Door Open	101	Aux3 Yellow (Preempt)
24	Phase 7 Red	50	Det J8 Both	76	Det I3 Lower	102	Detector Reset
25	Phase 7 Yellow	51	RR A (Offset Timing)	77	Det J3 Lower	103	Watch Dog
26	Phase 7 Green	52	RR B	78	Det 17 Lower	104	Logic Ground

E10. C1 Connector Map

C1 Pin	System Detector	Input File/Slot	Associated Phase	C1 Pin	System Detector	Input File/Slot	Associated Phase
39	Det 1	I2U	2	57	Det 15	J5U/L	7
40	Det 2	J2U	6	58	Det 16	I5U/L	3
41	Det 3	I6U	4	59	Det 17	J9U	5
42	Det 4	J6U	8	60	Det 18	I9U	1
43	Det 5	I2L	2	61	Det 19	J9L	7
44	Det 6	J2L	6	62	Det 20	I9L	3
45	Det 7	I6L	4	63	Det 21	I3U	2
46	Det 8	J6L	8	64	Det 22	J3U	6
47	Det 9	I4U/L	2	65	Det 23	I7U	4
48	Det 10	J4U/L	6	66	Det 24	J7U	8
49	Det 11	I8U/L	4	76	Det 25	I3L	2
50	Det 12	J8U/L	8	77	Det 26	J3L	6
55	Det 13	J1U/L	5	78	Det 27	I7L	4
56	Det 14	I1U/L	1	79	Det 28	J7L	8

E11. LACO-4E System Detector Cross Reference

C1 Pin	Function	C5 Pin
83	Aux 6 Red	1
84	Aux 6 Green	2
85	Aux 5 Red	3
86	Aux 5 Yellow	4
87	Aux 5 Green	5
88	Aux 4 Red	6
89	Aux 4 Yellow	7
90	Aux 4 Green	8
91	Aux 3 Red	9
93	Aux 2 Red	10
94	Aux 2 Yellow	11
95	Aux 2 Green	12
96	Aux 1 Red	13
97	Aux 1 Yellow	14
98	Aux 1 Green	15
99	Aux 6 Yellow	16
100	Aux 3 Yellow	17
101		18

E12. C1/C5 Cross Reference

The figure below provides all of the information needed to construct a cable for PC to 170 E controller serial communications using AB3418E. This would be necessary when using a PC (desktop or laptop) to verify AB3418E messaging before installing a controller in the field. This will also be used for Upload/Download of timing data (future implementation). For 170 family to 170 family communications using AB3418E, replace the "PC Serial Port" connector with a "170E Comm Port" connector with pins K and L reversed. That is, the DIN pin on one end of the cable should be connected to the DOUT on the other end. Twisted pair wire should be used for the data lines.

E13. Cabling Information for AB-3418E and BSP Communications

APPENDIX F. RAM MAPS

PROGRAM CONTROL

	00	01	02	03	04	05	06	07	08	09	OA	OB	OC	OD	0E	OF	
0	N17m	CalFlg	DspFlg	Temp0	Xtemp0	ThsRRng	Dynxcl	GFaze	In1	Out1	SysErr	SysFlg	RACurr	RBCurr	RAWTim	RBWTim	0
1	N100m	Ph1Flg	KeyFlg	Temp1	"	OthRng	Dynrst	WFaze	In2	Out2	MeMErr	MemFlg	RANext	RBNext	RADTim	RBDTim	1
2	C17m	Ph2Flg	PgAdd	Temp2	Xtemp1	ThisSt	Barset	DWFaze	In3	Out3	MonErr	MonFlg	RALast	RBLast	RAHold	RBHold	2
3	C100m	Ph3Flg	"	Temp3	"	OthrSt	Queact	YFaze	In4	Out4	PrtErr	FlsFlg	RALead	RBLead	RAOdd	RBOdd	3
4	PFlag	Ph4Flg	Phase	Temp4	Xtemp2	RAMain	TmpDet	RFaze	In5	Out5	CrdErr	PrtFlg	RATerm	RBTerm	RASupp	RBSupp	4
5	DspTmr	Ph5Flg	Intrvl	Temp5	"	RBMain	LLAMsk	Fazln	In6	Out6	WWVErr	CrdFlg	RAColr	RBColr	RAExt	RBExt	5
6	DIM	Ph6Flg	LSB	Temp6	Xtemp3	RASide	OlpClr	FazNxt	In7	Out7	RstVec	ClkFlg	RAFazd	RBFazD	RATBR	RBTBR	6
7	KeyBuf	Ph7Flg	NLSB	Temp7	"	RBSide	DynTrm	FazLst	In8	Out8	ErrFlg	DatFlg	RAIntD	RBIntD	RAMGap	RBMGap	7
8	PreTmr	Ph8Flg	NMSB	Temp8	Xtemp4	ThsQad	OIGFaz	OGFaze	In1L	Out9	DoorFlg	LetFlg	RALag	RBLag	RAMax	RBMax	8
9	OIFzln	InTmp1	MSB	Temp9	"	XCIFlg	QHold	OYFaze	In2L	OutA	UARTXI	IntCnt	RAStop	RBStop	RAФBuf	RBФBuf	9
A	XOIFaz	InTmp2	Event	TempA	Xtemp5	RstFlg		ORFaze	In3L	Lead	"	Strtup	RACntI	RBCntl	RAMadd	RBMadd	A
B	DynOFz	InTmp3	Table	TempB	"	DynRRP		IRCall	In4L	CLiteo	DetLok	StrFlg	RATFIg	RBTFIg	RAGot	RBGot	B
C	KeyPtr	InTmp4	LagFlg	TempC	Xtemp6	RXPTrm		DCall	In5L	Clite9	ResLok	PreFlg	RACall	RBCall	RAGrt	RBGrt	C
D	"	"	Lag	TempD	"	Ped		VCall	In6L	CalAct	XCILok	RngFlg	RALTrm	RBLTrm	RAStep	RBStep	D
E	ChkFlg	InTmp5	SavStk	TempE	Xtemp7	CalMsk	Force2	PCall	In7L	Callit	OLock	OlpFlg	RBFlag	RAFlag	RATemp	RBTemp	E
F	UTemp1	"	"	TempF	"	Allow	Advan	Call	In8L	Cntinu		QadFIg	RABrFz	RBBrFz	RALimt	RBLimt	F
	00	01	02	03	04	05	06	07	08	09	OA	OB	OC	OD	OE	OF	

Page 0000h RAM Map
NOTE: This entire page is write protected

PHASE TIMING/INTERSECTION CONTROL AND CONFIGURATION

	10	11	12	13	14	15	16	17	18	19	1A	1B	1 C	1D	1E	1F	
0	CpyFrm	Fz1Tmg	Fz2Tmg	Fz3Tmg	Fz4Tmg	Fz5Tmg	Fz6Tmg	Fz7Tmg	Fz8Tmg	SysNum	RAWalk	RBWalk	P1Baud		MnStFz	Permit	0
1	CpyTo									Port1A	RADWIk	RBDWIk	P2Baud	Assoc1	SdStFz	RLock	1
2	RATTRT									Port2A	RAMGrn	RBMGrn	P3Baud	Assoc2	Ped2	YLock	2
3	RBTTRT									Port3A	RAQuLm	RBQuLm	P4Baud	Assoc3	Ped4	VRCall	3
4	PrgNum									Port4A	RAInit	RBInit	P1ParA	Assoc4	Ped6	VXCall	4
5	Vrsion									Port1X	RAVExt	RBVExt	P2ParA	Assoc5	Ped8	GRest	5
6	RRsTim									Port2X	RATBRT	RBTBRT	P3ParA	Assoc6	PedA	RRest	6
7	GRsTim									Port3X	RACGap	RBCGap	P4ParA	Assoc 7	PedB	Barier	7
8	GRsTmr									Port4X	RACMax	RBCMax	P1BaudX	Assoc8	PRest	DbIEnt	8
9	AllRed										RASec	RBSec	P2BaudX	Call¢Y	STA	Xclusv	9
A	SpFunc										RACint	RBCint	P3BaudX	Call2Y		Rstrct	A
B	NMICnt										RARRev	RBRRev	P4BaudX	UFlag		LIArow	B
C	PLong									P1Reset	RARRst	RBRRst	P1ParX	GrnOff		LagFre	C
D	PShort									P2Reset	RAStpT	RBStpT	P2ParX	YelOff	DrwyFz	Faz1st	D
E	RedAll									P3Reset	RAYCIr	RBYCIr	P3ParX	YRngFz	Drwy2H	Start	E
F	RedRev	V	∇	P4Reset	RARCIr	RBRCIr	P4ParX	YRngOI	DrwYOI	Strtol	F						
	10	11	12	13	14	15	16	17	18	19	1A	1B	1C	1D	1E	1F	
														FLAG		DECIMAL	

Page 0100h RAM Map

Key Press to view $=$ Column + Row

WWV CONTROL/DETECTORS

Page 0200h RAM Map
Key Press to view $=$ Column + Row

PREEMPTION/OVERLAPS/WWV BUFFERS

	30	31	32	33	34	35	36	37	38	39	3A	3B	3C	3D	3E	3F	
0	Delay	EVADly	EVBDIy	EVCDly	EVDDly		RRSel	OnBBSTim	RRACnt	EVFlag	RRFaz	BBSFlag	PreLit	WWVFlag			0
1	Active	EVAAct	EVBAct	EVCAct	EVDAct		RR1Red		RRBCnt	EVAFaz	RRExit		ManOmt	BytTim			1
2	EVClear	EVACIr	EVBCIr	EVCCIr	EVDCIr		RRCIr		EVACnt	EVBFaz	RRPed	DynRRX	LagMan	TxDlay			2
3	Max	EVAMax	EVBMax	EVCMax	EVDMax		RRMax		EVBCnt	EVCFaz	RRBLim	RRCntI		RegX			3
4	Link	EVALnk	EVBLnk	EVCLnk	EVDLnk		RRLnk		EVCCnt	EVDFaz		RRStat		"			4
5	EVCIr	EVAMin	EVBMin	EVCMin	EVDMin		MrkTim	∇	EVDCnt	SavVeh		RRPre		WWVTxRx			5
6	RRClear	EVATmr	EVBTmr	EVCTmr	EVDTmr		MrkTmr	OfBBSTim	ManCnt			EVStat		"			6
7	BBSFIsh						RRMin			EVPre		EVMax		TxTime			7
8	BBSRed						RRSec			EVAct		EntFlg		TxBC			8
9	ManCon						RRDly			EVOIde		PreStat		RxBC			9
A	OIALod	OIADly	OIAGrn	OIAYel	OIARed	OIATmr	OADTmr		OIARev	DynOIA	OvipA	AGOmit	RROIA	EVOIA			A
B	OIBLod	OIBDly	OIBGrn	OIBYel	OlBRed	OIBTmr	OBDTmr	\downarrow	OIBRev	DynOIB	OvipB	BGOmit	RROIB	EVOIB		\downarrow	B
C	OICLod	OICDly	OICGrn	OICYel	OICRed	OICTmr	OCDTmr		OICRev	DynOIC	OvlpC	CGOmit	RROIC	EVOIC		CoCall	C
D	OIDLod	OIDDly	OIDGrn	OIDYel	OIDRed	OIDTmr	ODDTmr		OIDRev	DynOID	OvipD	DGOmit	RROID	EVOID		PedRst	D
E	OIELod	OIEDly	OIEGrn	OIEYel	OIERed	OIETmr	OEDTmr		OIERev	DynOIE	OvipE	EGOmit	RROIE	EVOIE	ABIEcho	Hold	E
F	OIFLod	OIFDly	OIFGrn	OIFYel	OIFRed	OIFTmr	OFDTmr		OIFRev	DynOIF	OvipF	FGOmit	RROIF	EVOIF	IOStat	Force1	F
	30	31	32	33	34	35	36	37	38	39	3A	3B	3C	3D	3E	3F	
														FLAG		DECIMAL	

Page 0300h RAM Map

Key Press to view $=$ Column + Row

Alternate Page 0400h RAM Map (when using Zip Coord)

Key Press to view $=$ Column + Row

Page 0400h RAM Map
Key Press to view $=$ Column + Row

Page 0600h RAM Map
Key Press to view = Column + Row

Page 0700h RAM Map

Key Press to view $=$ Column + Row

Page 0800h RAM Map
 Through
 Page 0F00 RAM Map

UNUSED

	EVENT TABLE 0				EVENT TABLE 1				EVENT TABLE 2				EVENT TABLE 3				
	100	101	102	103	104	105	106	107	108	109	10A	10B	10C	10D	10E	10F	
0	Table0				Table1				Table2				Table3				0
1																	1
2																	2
3																	3
4																	4
5																	5
6																	6
7																	7
8																	8
9																	9
A																	A
B																	B
C																	C
D																	D
E																	E
F																	
	100	101	102	103	104	105	106	107	108	109	10A	10B	10C	10D	10E	10F	

Page 1000h RAM Map
Key Press to view $=8+$ Column + Row

	EVENT TABLE 4				ANNUAL TABLE 5				FLOAT TABLE 6				EXCEPTION TABLE 7				
	110	111	112	113	114	115	116	117	118	119	11A	11B	11C	11D	11E	11F	
0	Table4				Table5				Table6				Table7				0
1																	1
2																	2
3																	3
4																	4
5																	5
6																	6
7																	7
8																	8
9																	9
A																	A
B																	B
C																	C
D																	D
E																	E
F																	F
	110	111	112	113	114	115	116	117	118	119	11A	11B	11C	11D	11E	11F	

Page 1100h RAM Map
Key Press to view $=8+$ Column + Row

	FUTURE TABLE 8				BSP TABLE 9				PROGRAMMABLE LOGIC								
	120	121	122	123	124	125	126	127	128	129	12A	12B	12C	12D	12E	12F	
0	Table8				Table9				INAA1		INAA2		INAA3		INAA4		0
1																	1
2																	2
3																	3
4																	4
5																	5
6																	6
7																	7
8																	8
9																	9
A																	A
B																	B
C																	C
D																	D
E																	E
F																	F
	120	121	122	123	124	125	126	127	128	129	12A	12B	12C	12D	12E	12F	

Page 1200h RAM Map
Key Press to view $=8+$ Column + Row

STACK

	130	131	132	133	134	135	136	137	138	139	13A	13B	13C	13D	13E	13F	
0		Stack															0
1																	1
2																	2
3																	3
4																	4
5																	5
6																	6
7																	7
8																	8
9																	9
A																	A
B																	B
C																	C
D																	D
E																	E
F																TStack	F
	130	131	132	133	134	135	136	137	138	139	13A	13B	13C	13D	13E	13F	

Page 1300h RAM Map
Key Press to view $=8+$ Column + Row
NOTE: This entire page is write protected

AB3418E SLAVE COMMUNICATIONS

	140	141	142	143	144	145	146	147	148	149	14A	14B	14C	14D	14E	14F	
0	ABRxBuf				AStufBuf				ABTxBuf					AB_Addr	ABFCS		0
1														AB_Ctrl			1
2														AB_IPI			2
3														AB_Cmd			3
4														AB_Intvl			4
5														FCSFlag			5
6														ABRxCnt			6
7														ABTxCnt		\downarrow	7
8														AB_Plan			8
9														ABTxRx			9
A														"			A
B																ABStat 1	B
C																ABStat2	C
D																ABPStat	D
E																NonCrit	E
F	∇	-	-	†	\downarrow	-	\downarrow	\downarrow	\downarrow	\downarrow	จ	\downarrow	\downarrow		\downarrow	Flags	F
	140	141	142	143	144	145	146	147	148	149	14A	14B	14C	14D	14E	14F	

Page 1400h RAM Map
Key Press to view $=8+$ Column + Row

	150	151	152	153	154	155	156	157	158	159	15A	15B	15C	15D	15E	15F	
0	Occ10ths	SDIchCtr	SDJChCtr	SDIOnCtr	SDJOnCtr	SDIOfCtr	SDJOfCtr	SDIVCtr	SDJVCtr	SDIOccH	SDIOccL	SDJOcch	SDJOccL				0
1	"																1
2	IFile																2
3	RstAllsd																3
4	SDReset																4
5	SDXfr																5
6	StOnOff																6
7																	7
8																	8
9																	9
A																	A
B																	B
C																	C
D		\downarrow				D											
E																	E
F	SDPerTmr															SDSeqNum	F
	150	151	152	153	154	155	156	157	158	159	15A	15B	15C	15D	15E	15F	

Page 1500h RAM Map
Key Press to view $=8+$ Column + Row

AB3418E DETECTER STATUS DATA/AB3418E MASTER

	160	161	162	163	164	165	166	167	168	169	16A	16B	16C	16D	16E	16F	
0	SDIVol	SDJVol	SDIOStat	SDJOStat	Scratch								AB7TxBuf		AB7FCS		0
1																	1
2																	2
3																	3
4																	4
5																	5
6																	6
7																∇	7
8																	8
9																	9
A																	A
B																	B
C																AB7Tx	C
D	∇	∇	∇	\downarrow												"	D
E																AB7TxCnt	E
F					∇								V	∇	∇	ABTime	
	160	161	162	163	164	165	166	167	168	169	16A	16B	16C	16D	16E	16F	

Page 1600h RAM Map
Key Press to view $=8+$ Column + Row

Page 1700h RAM Map

Page 1800h RAM Map

UNUSED

DIAGNOSTICS/MISCELLANEOUS

	190	191	192	193	194	195	196	197	198	199	19A	19B	19C	19D	19E	19F	
0			DwnTim	RRTim	StpTim	IntMap	Loc01C	Loc11C	Stop1	RAXMap	RBXMap	CmuMap		WWVRxBuf			0
1							*	"	Stop2								1
2							Loc02C	Loc12C	Stop3								2
3							*	"	Stop4						PwrFlg		3
4							Loc03C	Loc1EC	Stop5						ResFlg		4
5			†	\checkmark	\downarrow		"	"	Stop6						MsgErr		5
6			UpTime	EVTime			Loc04C		Stop7						ComErr		6
7							"		FazMap						PasTmr		7
8							Loc05C								DROMSum		8
9							"								"		9
A							Loc06C								SROMSum		A
B			\downarrow	\downarrow			"								"		B
C			DwnMin				Loc07C								SRAMSum		C
D		DoRAMSum	DwnSec				"								"		D
E		N17Tst	NovRed				Loc10C		∇					∇	Rompag		E
F		N17Last	NovRit			∇	"			\downarrow	∇	∇		W100M	"		F
	190	191	192	193	194	195	196	197	198	199	19A	19B	19C	19D	19E	19F	

Page 1900h RAM Map
Key Press to view $=8+$ Column + Row

AB3418E COORDINATION MOE's

	1A0	1A1	1A2	1A3	1A4	1A5	1A6	1A7	1A8	1A9	1AA	1AB	1AC	1AD	1AE	1AF	
0		LSplits	Splt10s	CSplits													0
1																	1
2																	2
3																	3
4																	4
5																	5
6																	6
7																	7
8		LDelays	Dlay10s	CDèlays													8
9																	9
A																	A
B	CFazOut																B
C	EchoPerm																C
D	EchoPlan																D
E	EchoLMst																E
F	CordSeq																F
	1A0	1A1	1A2	1 ${ }^{\text {A }}$	1A4	1A5	1A6	1A7	1A8	1A9	1AA	1 AB	1AC	1AD	1AE	1AF	

Page 1A00h RAM Map
Key Press to view $=8+$ Column + Row

Page 1B00h RAM Map
Page 1C00h RAM Map

Page 1D00h RAM Map

UNUSED

BSP CONTROL AND CONFIGURATION

	1E0	1E1	1E2	1E3	1E4	1E5	1E6	1E7	1E8	1E9	1EA	1EB	1EC	1ED	1EE	1EF	
0	BSPMode	ETATmr	SLOP	CYDun	BSPTxRx	BSPFCS		BSPRxBuf		BStufBuf		BSPTxBuf		BScratch			0
1	BAddr1	DTGP	AQLA	BusNumHi	"												1
2	BAddr2	PriFlg	AQLB	BusNumLo	BSPRxCnt												2
3	BCity	PriFaz	BSPRAQ		BSPTxCnt												3
4	HWETA	BSPTOD	BSPRBQ	BSPFlag	B_Addr1												4
5	TrpPnt	BSPFix	AQFlag	BCRCPtr	B_Addr2												5
6		BSPFIoat	BQFlag	"	B_City												6
7		BSPDFaz	BSPFTB	BTemp1	B_Ctrl		\checkmark										7
8	PriPhz	BSPFaz1	BSPDone	"	B_IPI												8
9	DemPhz	BSPFaz2	BSPMax	BTemp2	B_Cmd												9
A	NFaze	BSPFaz3	CYCnt	"	B_Rev												A
B	SFaze	BSPFaz4	BAICP		BusiD1												B
C	EFaze	BSPFaz5	PStart		BusiD2												C
D	WFaze	BSPFaz6	Pend		BusStat												D
E		BSPFaz7	Error		BusETA												E
F		BSPFaz8	ErrSum		BMsgErr	V		\downarrow	\checkmark	V	\downarrow	\downarrow	∇	\downarrow	\checkmark	∇	F
	1E0	1E1	1E2	1E3	1E4	1E5	1E6	1E7	1E8	1E9	1EA	1EB	1EC	1ED	1EE	1EF	

Page 1E00h RAM Map
Key Press to view $=8+$ Column + Row

BUS HEADWAY

	1 F 0	1F1	1F2	1 1F2	1F4	1F5	1 1F6	1F7	1F8	$1 \mathrm{F9}$	1FA	1FB	1FC	1FD	1FE	1FF	
0	BegBHdy																0
1																	1
2																	2
3																	3
4																	4
5																	5
6																	6
7																	7
8																	8
9																	9
A																	A
B																	B
C																	C
D																	D
E																	E
F																EndBHdy	F
	1F0	1F1	1 F 2	1 F3	1F4	1F5	1 F 6	1F7	1F8	1F9	1FA	1FB	1FC	1FD	1FE	1FF	

Page 1F00 RAM Map
Key Press to view $=8+$ Column + Row

APPENDIX G. CHECKSUM MAPS

PHASE TIMING/INTERSECTION CONTROL AND CONFIGURATION

	10	11	12	13	14	15	16	17	18	19	1A	1B	1C	1D	1E	1F	
0	CpyFrm	Fz1Tmg	Fz2Tmg	Fz3Tmg	Fz4Tmg	Fz5Tmg	Fz6Tmg	Fz7Tmg	Fz8Tmg	SysNum	RAWalk	RBWalk	P1BaudA		MnStFz	Permit	0
1	CpyTo									Port1A	RADWIk	RBDWIk	P2BaudA	Assoc1	SdStFz	RLock	1
2	RATTRT									Port2A	RAMGrn	RBMGrn	P3BaudA	Assoc2	Ped2	YLock	2
3	RBTTRT									Port3A	RAQuLm	RBQuLm	P4BaudA	Assoc3	Ped4	VRCall	3
4	PrgNum									Port4A	RAInit	RBInit	P1ParA	Assoc4	Ped6	VXCall	4
5	Vrsion									Port1X	RAVExt	RBVExt	P2ParA	Assoc5	Ped8	GRest	5
6	RRsTim									Port2X	RATBRT	RBTBRT	P3ParA	Assoc6	PedA	RRest	6
7	GRsTim									Port3X	RACGap	RBCGap	P4ParA	Assoc7	PedB	Barier	7
8	GRsTmr									Port4X	RACMax	RBCMax	P1BaudX	Assoc8	PRest	DblEnt	8
9	AllRed										RASec	RBSec	P2BaudX	CallФY	STA	Xclusv	9
A	SpFunc										RACint	RBCint	P3BaudX	Call2Y		Rstrct	A
B	NMICnt										RARRev	RBRRev	P4BaudX	UFlag		LIArow	B
C	PLong									P1Reset	RARRst	RBRRst	P1ParX	GrnOff		LagFre	C
D	PShort									P2Reset	RAStpT	RBStpT	P2ParX	YelOff	DrwyFz	Faz1st	D
E	RedAll									P3Reset	RAYCIr	RBYCIr	P3ParX	YRngFz	Drwy2H	Start	E
F	RedRev	∇	\downarrow	∇	∇	∇	∇	∇	\checkmark	P4Reset	RARCIr	RBRCIr	P4ParX	YRngOI	DrwYOI	StrtOI	F
	10	11	12	13	14	15	16	17	18	19	1A	1B	1 C	1D	1E	1F	

| Page 0100h Checksum/Copy Mask | TIMING
 SHEET
 DATA |
| :--- | :---: | | DYNAMIC |
| :---: |
| DATA |

WWV CONTROL/DETECTORS

	20	21	22	23	24	25	26	27	28	29	2A	2B	2C	2D	2E	2F	
0	TxMsg	DetIDx	DetJDx	DetICo	DetJCo	DetIVa	DetJVa	DtIDTm	DtJDTm	DtICTm	DtJCTm	IdetFz	JdetFz	IdetAt	JdetAt		0
1	WHour																1
2	WMin																2
3	WSec																3
4	WMonth																4
5	WDay																5
6	WYear																6
7	WDOW																7
8	Hour															Delop1	8
9	Minute															Delop2	9
A	Second																A
B	Month																B
C	Day																C
D	Year	\checkmark	\checkmark	\checkmark	∇	\checkmark	V	∇	∇		D						
E	DOW																E
F	TMCCIk	StuckOn	StuckOff	Chatter	Period												F
	20	21	22	23	24	25	26	27	28	29	2A	2B	2C	2D	2E	2 F	

PREEMPTION/OVERLAPS/WWV BUFFERS

	30	31	32	33	34	35	36	37	38	39	3A	3B	3C	3D	3E	3F	
0	Delay	EVADIy	EVBDIy	EVCDIy	EVDDly		RRSel	OnBBSTim	RRACnt	EVFlag	RRFaz		PreLit	WWVFlag			0
1	Active	EVAAct	EVBAct	EVCAct	EVDAct		RR1Red		RRBCnt	EVAFaz	RRExit		ManOmt	BytTim			1
2	EVClear	EVACIr	EVBCIr	EVCCIr	EVDCIr		RRCIr		EVACnt	EVBFaz	RRPed	DynRRX	LagMan	TxDlay			2
3	Max	EVAMax	EVBMax	EVCMax	EVDMax		RRMax		EVBCnt	EVCFaz	RRBLim	RRCntI		RegX			3
4	Link	EVALnk	EVBLnk	EVCLnk	EVDLnk		RRLnk		EVCCnt	EVDFaz		RRStat		"			4
5	EVClr	EVAMin	EVBMin	EVCMin	EVDMin		MrkTim	∇	EVDCnt	SavVeh		RRPre		WWVTxRx			5
6	RRClear	EVATmr	EVBTmr	EVCTmr	EVDTmr		MrkTmr	OfBBSTim	ManCnt			EVStat		"			6
7							RRMin			EVPre		EVMax		TxTime			7
8							RRSec			EVAct		EntFlg		TxBC			8
9	ManCon						RRDly			EVOIde		PreStt		RxBC			9
A	OIALod	OIADIy	OIAGrn	OIAYel	OIARed	OIATmr	OADTmr		OIARev	Dynola	OvipA	AGOmit	RROIA	EVOIA			A
B	OIBLod	OIBDIy	OIBGrn	OIBYel	OIBRed	OIBTmr	OBDTmr	∇	OIBRev	DynOIB	OvlpB	BGOmit	RROIB	EVOIB			B
C	OICLod	OICDIy	OICGrn	OICYel	OICRed	OICTmr	OCDTmr		OICRev	DynOIC	OvlpC	CGOmit	RROIC	EVOIC		CoCall	C
D	OIDLod	OIDDly	OIDGrn	OIDYel	OIDRed	OIDTmr	ODDTmr		OIDRev	Dynoid	OvipD	DGOmit	RROID	EVOID		PedRst	D
E	OIELod	OIEDly	OIEGrn	OIEYel	OIERed	OIETmr	OEDTmr		OIERev	DynOIE	OvipE	EGOmit	RROIE	EVOIE	ABIEcho	Hold	E
F	OIFLod	OIFDly	OIFGrn	OIFYel	OIFRed	OIFTmr	OFDTmr		OIFRev	DynOIF	OvlpF	FGOmit	RROIF	EVOIF	IOStat	Force1	F
	30	31	32	33	34	35	36	37	38	39	3A	3B	3C	3D	3E	3F	

		PLAN 1	PLAN 2	PLAN 3	PLAN 4	PLAN 5	PLAN 6	PLAN 7	PLAN 8	PLAN 9	Set ZIPCRD (location 7-A-D) $=001$ to activate this RAM configuration						
	40	41	42	43	44	45	46	47	48	49	4A	4B	4 C	4D	4E	4F	
0	SysMan	Cycle								\rightarrow							0
1	LocMan	Force1								\rightarrow							1
2	MasPIn	Force2								\rightarrow							2
3	LocPln	Force3								\rightarrow							3
4	TMCPIn	Force4								\rightarrow							4
5	TODPIn	Force5								\rightarrow							5
6	TODSpF	Force6								\rightarrow							6
7	TODTы	Force7								\rightarrow							7
8	MinCyc	Force8															8
9	MaxCyc	Free															9
A	MasCyc																A
B	LocCyc																B
C	NewOff																C
D	CurOff																D
E	LMster																E
F	LLocal																F
	40	41	42	43	44	45	46	47	48	49	4A	4B	4C	4D	4E	4F	
							Alternate	Page 04 (when	00h Chec using Zip	cksum/Copy Coord)	y Ma					DYNAMIC DATA	

		CYCLE/INTERVALS			PLAN 1 FLAGS				PLAN 2 FLAGS				PLAN 3 FLAGS				
	40	41	42	43	44	45	46	47	48	49	4A	4B	4C	4D	4E	4F	
0	SysMan	Plan1x	Plan2x	Plan3x	P1Frce	P1Hold	P1PRst	P1Call	P2Frce	P2Hold	P2PRst	P2Call	P3Frce	P3Hold	P3PRst	P3Call	0
1	LocMan																1
2	MasPIn																2
3	LocPln																3
4	TMCPIn																4
5	TODPIn																5
6	TODSpF																6
7	TODTbI																7
8	MinCyc																8
9	MaxCyc																9
A	MasCyc																A
B	LocCyc																B
C	NewOff																C
D	CurOff																D
E	LMster	\downarrow	E														
F	LLocal																F
	40	41	42	43	44	45	46	47	48	49	4A	4B	4C	4D	4E	4F	

Page 0400h Checksum/Copy Mask

Page 0500h Checksum/Copy Mask
TIMING DATA

		CYCLE/INTERVALS			PLAN 7 FLAGS				PLAN 8 FLAGS				PLAN 9 FLAGS				
	60	61	62	63	64	65	66	67	68	69	6A	6B	6C	6D	6E	6 F	
0		Plan7x	Plan8x	Plan9x	P7Frce	P7Hold	P7PRst	P7Call	P8Frce	P8Hold	P8PRst	P8Call	P9Frce	P9Hold	P9PRst	P9Call	0
1																	1
2																	2
3																	3
4																	4
5																	5
6																	6
7																	7
8																	8
9																	9
A																	A
B																	B
C																	
D																	
E																	
F		\checkmark	\downarrow	\checkmark	\checkmark	\checkmark	\downarrow	\checkmark	\checkmark	\checkmark	\downarrow	\checkmark	\checkmark	\checkmark	\checkmark	\downarrow	
	60	61	62	63	64	65	66	67	68	69	6A	6B	6C	6D	6E	6 F	

	COORDINATION ATTRIBUTES										7A	7B	7C	7D	7E	7F	
	70	71	72	73	74	75	76	77	78	79							
0	Lag0	Lag1	Lag2	Lag3	Lag4	Lag5	Lag6	Lag7	Lag8	Lag9	Offst0	CycLen			SICBit	DialX	0
1	VCallo	VCall1	VCall2	VCall3	VCall4	VCall5	VCall6	VCall7	VCall8	VCall9	OffSt1	CurPorF			CordM	"	1
2	PCallo	PCall1	PCall2	PCall3	PCall4	PCall5	PCall6	PCall7	PCall8	PCall9	OffSt2	NewPorF			CordE		2
3	VXCalo	VXCal1	VXCal2	VXCal3	VXCal4	VXCal5	VXCal6	VXCal7	VXCal8	VXCal9	OffSt3	CurPIn			CordO		3
4	BaRclo	BaRcl1	BaRcl2	BaRcl3	BaRcl4	BaRcl5	BaRcl6	BaRcl7	BaRcl8	BarCl9	OffSt4	LastPIn			CordF	ForceX	4
5	GrnClo	GrnCl1	GrnCl2	GrnCl3	GrnCl4	GrnCl5	GrnCl6	GrnCl7	GrnCl8	GrnCl9	OffSt5	PInTMC			FloatB	"	5
6	Grn20	Grn21	Grn22	Grn23	Grn24	Grn25	Grn26	Grn27	Grn28	Grn29	OffSt6	MSync			Adaptv		6
7											OffSt7				MAX2		7
8	NoMax0	NoMax1	NoMax2	NoMax3	NoMax4	NoMax5	NoMax6	NoMax7	NoMax8	NoMax9	OffSt8				FunTmr		8
9	RdRst0	RdRst1	RdRst2	RdRst3	RdRst4	RdRst5	RdRst6	RdRst7	RdRst8	RdRst9	OffSt9						9
A	Omit0	Omit1	Omit2	Omit3	Omit4	Omit5	Omit6	Omit7	Omit8	Omit9	OffPIn						A
B	OmtSd0	OmtSd1	OmtSd2	OmtSd3	OmtSd4	OmtSd5	OmtSd6	OmtSd7	OmtSd8	OmtSd9	MSPHr						B
C	Costa0	Costa1	Costa2	Costa3	Costa4	Costa5	Costa6	Costa7	Costa8	Costa9	MSPMin					InitByte	C
D	CondS0	CondS1	CondS2	CondS3	CondS4	CondS5	CondS6	CondS7	CondS8	CondS9	ZipCrd					CurN17M	D
E																HiN17M	E
F															ZipMsk	CrdDis	F
	70	71	72	73	74	75	76	77	78	79	7A	7B	7C	7D	7E	7F	
Page 0700h Checksum/Copy Mask														TIMING SHEET DATA		$\begin{aligned} & \text { DYNAMIC } \\ & \text { DATA } \end{aligned}$	

	TOD TABLE 0				TOD TABLE 1				TOD TABLE 2				TOD TABLE 3				
	100	101	102	103	104	105	106	107	108	109	10A	10B	10C	10D	10E	10F	
0	Table0				Table 1				Table 2				Table 3				0
1																	1
2																	2
3																	3
4																	4
5																	5
6																	6
7																	7
8																	8
9																	9
A																	A
B																	B
C																	C
D																	D
E																	E
F																	F
	100	101	102	103	104	105	106	107	108	109	10A	10B	10C	10D	10E	10F	

Page 1000h Checksum/Copy Mask

TOD TABLE 4					ANNUAL TABLE 5				FLOAT TABLE 6				EXCEPTION TABLE 7			
	110	111	112	113	114	115	116	117	118	119	11A	11B	11C	11D	11E	11F
0	Table 4				Table 5				Table 6				Table 7			0
1																1
2																2
3																3
4																4
5																5
6																6
7																7
8																8
9																9
A																A
B																B
C																C
D																D
E																E
F																F
	110	111	112	113	114	115	116	117	118	119	11A	11B	11C	11D	11E	11F
								ge 110	Check	/Co	ask				NG ET TA	DYNAMIC DATA

	FUTURE TABLE 8				BSP TABLE 9				PROGRAMMABLE LOGIC							
	120	121	122	123	124	125	126	127	128	129	12A	12B	12C	12D	12E	12F
0	Table 8				Table 9				INAA1		INAA2		INAA3		INAA4	0
1																
2																
3																
4																
5																
6																
7																
8																
9																9
A																
B																
C																
D																
E																
F																F
	120	121	122	123	124	125	126	127	128	129	12A	12B	12C	12D	12E	12F
								12	Chec	m/Co	Mask				NG	DYNAMIC DATA

BUS SIGNAL PRIORITY CONTROL AND CONFIGURATION

	1E0	1E1	1E2	1E3	1E4	1E5	1E6	1E7	1E8	1E9	1EA	1EB	1EC	1ED	1EE	1EF	
0	BSPMode	ETATmr	SLOP	CYDun	BSPTxRx	BSPFCS		BSPRxBuf		BStufBuf		BSPTxBuf		BScratch			0
1	BAddr1	DTGP	AQLA	BusNumHi	＂												1
2	BAddr2	PriFlg	AQLB	BusNumLo	BSPRxCnt												2
3	BCity	PriFaz	BSPRAQ		BSPTxCnt												3
4	HWETA	BSPTOD	BSPRBQ	BSPFlag	B＿Addr1												
5	TrpPnt	BSPFix	AQFlag	BCRCPtr	B＿Addr2												5
6		BSPFloat	BQFlag	＂	B＿City												6
7		BSPDFaz	BSPFTB	BTemp1	B＿Ctrl												7
8	PriPhz	BSPFaz1	BSPDone	＂	B＿IPI		\checkmark										8
9	DemPhz	BSPFaz2	BSPMax	BTemp2	B＿Cmd												9
A	NFaze	BSPFaz3	CYCnt	＂	B＿Rev												A
B	SFaze	BSPFaz4	BAICP		BusID1												B
C	EFaze	BSPFaz5	PStart	BSP＿City	BusID2												C
D	WFaze	BSPFaz6	Pend		BusStat												D
E		BSPFaz7	Error		BusETA												E
F		BSPFaz8	ErrSum		BMsgErr												F
	1E0	1E1	1E2	1E3	1E4	1壴5	1E6	1区7	1企8	1E9	1込	1ЕB	1EC	1ED	1楼E	1芭F	

TROUBLESHOOTING GUIDE

IS IT THE FIRMWARE OR THE HARDWARE?

FIELD ENVIRONMENT AND CABINET ENVIRONMENT

Outputs
Inputs
COMMUNICATIONS ENVIRONMENT
AB3418E To Central
Bus Signal Priority
WWV/GPS
Peer To Peer

FIRMWARE ENVIRONMENT

Signals
Phase Calls
Why Is The Intersection In Flash?
Conflict Monitor Flash Fault Analysis

MISCELLANEOUS

Railroad Inputs
Communications Testing

FIGURES

Figure H1 - Laco-4e Environments
Figure H2 - Local Coordinator Plan Selection Hierarchy Figure H3 - Laco-4e Key Press Map

LACO-4E USERS MANUAL
 Appendix H - TROUBLESHOOTING GUIDE

IS IT THE FIRMWARE OR THE HARDWARE?

When encountering problems in the field or lab, this is often one of the first questions asked. The lab environment is a simulation of the field environment with a tester replacing all of the cabinet and field wiring/hardware (with the exception of the CMU and communications). While the majority of problems can be detected in a lab environment, because of the presence of random inputs, field outputs and the CMU, some problems only manifest themselves when in a real-world field environment. This guide takes the approach that a problem has been detected at an intersection, unless otherwise noted.

To assist in fault isolation, it helps to break down the LACO-4E environment into smaller pieces (see figure $\mathrm{H}-1$ at the end of this section):
1.Field Environment

- Field Wiring
- Field Devices

2. Communications Environment

- Wiring
- Antennas
- Communications Devices (i.e. GPS Receiver, External Modems, etc)

3. Cabinet Environment

- Controller Hardware
- CPU Module (CPU, EPROM, NVRAM, Quad UART)
- Input Module
- Output Module
- Modems
- Front Panel
- Cabinet Hardware
- Input File(s)
- Output File(s)
- Conflict Monitor
- Police Panel
- Power Supply
- Battery Backup System (future)
- Cabinet Wiring
4.Firmware Environment
- LACO-4E Program

Additionally, the types of faults that are typically experienced can be broken down into distinct categories. The source of I/O problems and communications problems are usually confined to the Field, Communications and Cabinet environments. That is, they are most often a result of hardware issues. Signal logic problems, on the other hand, almost always originate in the Firmware environment. The source for signal logic problems can usually be traced to either configuration (user entered timing) or program logic (bugs).

LACO-4E USERS MANUAL
 Appendix H - TROUBLESHOOTING GUIDE

FIELD ENVIRONMENT AND CABINET ENVIRONMENT

From the LACO-4E firmware perspective, these will be treated as the same environment.

Outputs

A typical problem encountered is an intersection in cabinet flash. That is, the CMU has sensed one or more field problems, set the Flash Sense and External Stop Time inputs to ON and enabled the cabinet Flash relays. Observation of the CMU is the first step in fault isolation. However, the CMU only knows if (for example) phase 2 signal heads are displaying both green and red at the same time. It does not know the source of the conflicting output, which can be any of the LACO-4E, Field or Cabinet environments.

Problems involving field outputs can be quickly isolated using the LACO-4E integrated FlashOut utility (see section 8 for more information). This feature bypasses all intersection timing, which can cloud fault isolation at an intersection.

Basically, if the desired output goes ON/OFF when toggled from the keypad, but not when the LACO4E Signals program is running, then the problem is in the intersection timing. Otherwise, the problem lies somewhere in the output circuit path including any of the following:

- Field device
- Field wiring
- Cabinet wiring
- Output File
- C1 harness and connector
- 170E Controller Backplane assembly
- 170E Controller Output module

When the desired output toggles successfully from the FlashOut utility, incorrect Programmable Logic timing is likely to cause this type of faulty operation. If an examination of the intersection timing does not reveal the problem, faulty program logic (bug) should be considered a possibility and the user should consult with LACO-4E technical support.

Inputs

Problems involving field inputs require a little more investigation to resolve. The first step involves isolating the problem to either the controller or the rest of the input path (field wiring/devices and cabinet wiring/hardware).

Appendix E1 is the LACO-4E Input Function Map. It provides a cross reference between the hardware addresses, firmware addresses and the default function of all forty four inputs to the 170E Controller. The general fault isolation process is as follows:

- Locate the suspect input on the Input Function Map
- Access the firmware (080 through 085) address that corresponds to the suspect input
- Toggle the suspect input (using the appropriate circuit card in the Input File)
- Observe the call light corresponding to the suspect input's column in the Input Function Map.
- If it illuminates and extinguishes with the toggling of the input, then the input circuit path from the Input file up to and including the RAM chip on the CPU module has been validated. This also eliminates the intersection timing as a possible cause. At this point, the remaining portion of the input circuit path (cabinet wiring, field wiring and field input devices) should be verified.
- If the call light does not change with a change in the input, then access the hardware address (7401 through 7406) that corresponds to the suspect input.
- Toggle the suspect input again (using a circuit card in the Input File)
- Observe the call light corresponding to the suspect input's column in the Input Function Map.
- If it illuminates and extinguishes with the toggling of the input, then the input path from the Input file up to and including the 170E Controller Input module has been validated and the problem is in the cabinet wiring to the input file, the field wiring or the field input device.
- If the call light does not change with a change in the input then one of the following is possibly defective.
- Input File card
- C1 harness and connector
- 170E Controller Backplane assembly
- 170E Controller Input module

LACO-4E USERS MANUAL
 Appendix H - TROUBLESHOOTING GUIDE

COMMUNICATIONS ENVIRONMENT

AB3418E to Central

For proper Central System communication to take place, several things need to be in place:

- The desired Comm port must be set to "008" (AB3418E Slave).
- The desired Comm port's Baud Rate and Parity must be set to match the Baud Rate and Parity of the Central System (or intervening communications device if any).
- A properly configured modem must be connected to the desired Comm port.
- The System ID (SysNum, location 190) must be configured properly. Only values between " 001 " and " 063 " are valid. The System ID of each controller on a communications channel must be unique.

Is the 170 E Controller receiving a message?

- Access memory location 1400 (AB3418E Slave Receive Data Buffer)
- Observe that call lights 2 through 6 are illuminated
- Press the " 0 " key and observe that all call lights extinguish
- Send a message from Central and observe that call lights 2 through 6 illuminate

If the above sequence occurs, then the receive side of the communications path up to and including the LACO-4E firmware has been validated.

If the above sequence does not occur, then the communications path up to the controller comm port should be examined.
Is the 170 E Controller responding to the message?

- Access memory location 1480 (AB3418E Slave Transmit Data Buffer)
- Observe that call lights 2 through 6 are illuminated
- Press the "0" key and observe that all call lights extinguish
- Send a message from Central and observe that call lights 2 through 6 illuminate

If the above sequence occurs, then the transmit side of the communications path up to and including the LACO-4E firmware has been validated.
Has LACO-4E detected any errors? If the above sequence does not occur, then the communications path up to the controller comm port should be examined. Access memory location 14E0. If call light 4 is illuminated, then the checksum of the message received at the controller did not match the checksum of the message sent from Central. This situation requires a detailed examination of the receive side of the communications path.
The 170E Controller does not accept a Time/Date download from Central. This will occur if the 1170E controller is connected to functioning WWV/GPS receiver and configured for WWV/GPS operation on another comm port.

LACO-4E USERS MANUAL
 Appendix H - TROUBLESHOOTING GUIDE

Bus Signal Priority (BSP)

For proper BSP operation to take place, several things need to be in place:
1 The desired Comm port must be set to "009" (Bus Signal Priority).
2 The desired Comm port's Baud Rate and Parity must be set to match the Baud Rate and Parity of the bus.

3 A properly configured modem must be connected to the desired Comm port.
4 The BSP Mode, Primary Address, Secondary Address and City Code must be configured properly.

Is the 170E Controller receiving a message?

- Access memory location 1E70 (BSP Receive Data Buffer)
- Observe that call lights 2 through 6 are illuminated
- Press the " 0 " key and observe that all call lights extinguish
- Initiate a bus check-in message and observe that call lights 2 through 6 illuminate

If the above sequence occurs, then the receive side of the communications path up to and including the LACO-4E firmware has been validated.
If the above sequence does not occur, then the communications path up to the controller comm port should be examined.

Is the 170 E Controller responding to the message?

- Access memory location 1EB0 (BSP Transmit Data Buffer)
- Observe that call lights 2 through 6 are illuminated
- Press the " 0 " key and observe that all call lights extinguish
- Send a message from Central and observe that call lights 2 through 6 illuminate

If the above sequence occurs, then the transmit side of the communications path up to and including the LACO-4E firmware has been validated.

LACO-4E USERS MANUAL
 Appendix H - TROUBLESHOOTING GUIDE

Has LACO-4E detected any errors? Observe location 1E45 (BSP Communication Errors).
Illuminated call lights indicate a problem with the received message.
1 Bad Opening/Closing flag: The first and/or last byte of the received message was not a "07Eh".
2 Wrong Primary Address: The Primary Address encoded in the received message does not match the Primary Address set in the controller.
Ensure that the Primary Address is set properly in the controller
3 Wrong Secondary Address: The Secondary Address encoded in the received message does not match the Secondary Address set in the controller.

Ensure that the Secondary Address is set properly in the controller.
4 Wrong City Code: The City code in the received message does not match the City code set in the controller

Ensure that the City code is set properly in the controller.
5 Bad Control byte/IPI byte/Command: At least one of these three bytes in the received message was incorrect. The Control byte must always be "003h", the IPI byte must always be "0C3h" and the Command byte must be either "085h" (for Rev 1 protocol) or "088h" (for Rev 2 protocol).
6 Bad Revision: As of Dec 1, 2006, there are two revisions of the BSP protocol used by the L.A. County MTA. Revision 1 is the LACO-4E only supports "Revision 1" of the Bus Signal Priority Protocol.

7 not used

8 Bad Check Sum: The computed checksum of the received message does not match the checksum of the message transmitted by the bus.
Items 1, 5, 6 and 8 are issues that originate outside the LACO-4E environment. The system transmitting the message with the errors should be inspected to confirm proper configuration.

LACO-4E USERS MANUAL
 Appendix H - TROUBLESHOOTING GUIDE

WWV and GPS

For proper WWV/GPS operation to take place, several things need to be in place:

1 The desired Comm port must be set to "001" (WWV/GPS).
2 The desired Comm port's Baud Rate and Parity must be set to match the Baud Rate and Parity of the WWV/GPS unit.

3 One end of a properly wired cable must be connected to the desired Comm port.
4 The other end of a properly wired cable must be connected to a functional WWV/GPS unit.
5 A compatible antenna must be connected to the WWV/GPS unit.
6 The WWV/GPS unit must be powered up. A GPS unit receives power from the 170E Controller's Comm port through the attached cable. A WWV unit receives power from a separate power supply and cable.

Has LACO-4E detected any errors? Observe WWV Clock Errors (WWVErr, location 0A5). Illuminated call lights indicate problem.

1 Not Locked On: The WWV/GPS unit is connected and the desired Comm port is configured correctly but the WWV/GPS unit has not locked on to a valid signal.

Atmospheric conditions and the physical location of the WWV/GPS unit's antenna can affect this. If this error persists, the WWV/GPS unit itself may be malfunctioning.
Exchange the WWV/GPS unit for a known good WWV/GPS unit.

2 not used

3 Clock Receive Timed Out: A cable is connected to the port configured for WWV/GPS but the WWV/GPS unit is either not connected to the cable or is not functional.

Ensure that the WWV/GPS unit is connected to its antenna.
Ensure that the WWV/GPS unit is powered up.
Exchange the existing cable for a known good cable or exchange the WWV/GPS unit for a known good WWV/GPS unit.

4 Bad/Unrecognized Data: The first byte received for the Time update was not the ASCII "space" character (020h). The WWV/GPS unit could be malfunctioning or the Comm port's Baud Rate and/or Parity do not match the WWV/GPS unit's Baud Rate and/or Parity.

Ensure that the WWV/GPS Comm port's Baud Rate and/or Parity match the WWV/GPS unit's Baud Rate and/or Parity.

5 not used

6 not used

7 No Port Configured: None of the four Comm ports is set to "001" (WWV/GPS).
Ensure that the desired Comm port is set to "001".
8 Cable Disconnected: The WWV/GPS cable is not connected to the desired Comm port, or the cable is defective or improperly wired.

Ensure that a properly wired cable is connected between the desired Comm port and a WWV/GPS unit.

Exchange the existing cable with a known good cable.

LACO-4E USERS MANUAL
 Appendix H - TROUBLESHOOTING GUIDE

Peer to Peer

Peer to Peer communication is any communication between controllers. LACO-4E provides the following Peer to Peer options.
For LACO-4E to LACO-4E controller

- Send Time and Date using AB3418E protocol
- Send Time and Date using L.A. County proprietary protocol
- Send Coordination Plan information

For LACO-4E to LACO-1R and LACO-3 controller

- Send Time and Date using AB3418E protocol
- Send Time and Date using L.A. County proprietary protocol

For LACO-4E to any AB3418E compliant controller (170, NEMA or 2070/ATC)

- Send Time and Date using AB3418E protocol

Send Time and Date using AB3418E protocol

For proper peer to peer communications to occur, several things need to be in place:

- The desired Comm port of the LACO-4E Master must be set to "007" (AB3418E Master).
- The desired Comm port's Baud Rate and Parity must be set to match the Baud Rate and Parity of the AB3418E Slave(s).
- A properly configured modem must be connected to the desired Comm port.

Is the 170E Master Controller transmitting the SetTime message?
This applies to any peer to peer combination where the LACO-4E controller is acting as the AB3418E Master.

- Access memory location 16E0 (AB3418E Master Transmit Data Buffer)
- Observe that call lights 2 through 6 are illuminated
- Press the " 0 " key and observe that all call lights extinguish
- Send a message from Central and observe that call lights 2 through 6 illuminate If the above sequence occurs, then the transmit side of the communications path up to and including the LACO-4E firmware has been validated.

Is the 170E Slave Controller receiving the SetTime message?
This applies to any peer to peer combination where the LACO-4E controller is acting as the AB3418E Slave.

- Access memory location 1400 (AB3418E Slave Receive Data Buffer)
- Observe that call lights 2 through 6 are illuminated
- Press the " 0 " key and observe that all call lights extinguish
- Send a message from Central and observe that call lights 2 through 6 illuminate If the above sequence occurs, then the receive side of the communications path up to and including the LACO-4E firmware has been validated.

LACO-4E USERS MANUAL Appendix H - TROUBLESHOOTING GUIDE

Send Time and Date using LACO-xx Proprietary Protocol

For proper peer to peer communication to take place, several things need to be in place:

- The desired Comm port of the LACO-4E controller must be set to "004" (Transmit Time/Date).
- The desired Comm port's Baud Rate and Parity must match that of the receiving controller
- A properly configured modem must be connected to the desired Comm port.

Receive Time and Date using LACO-xx Proprietary Protocol

For proper peer to peer communication to take place, several things need to be in place:

- The desired Comm port of the LACO-4E controller must be set to "005" (Receive Time/Date).
- The desired Comm port's Baud Rate and Parity must match that of the transmitting controller
- A properly configured modem must be connected to the desired Comm port.

Send 7-Wire data using LACO-xx Proprietary Protocol

For proper peer to peer communication to take place, several things need to be in place:

- The desired Comm port of the LACO-4E controller must be set to "002" (Transmit 7-Wire).
- The desired Comm port's Baud Rate and Parity must match that of the receiving controller
- A properly configured modem must be connected to the desired Comm port.

Receive 7-Wire data using LACO-xx Proprietary Protocol

For proper peer to peer communication to take place, several things need to be in place:

- The desired Comm port of the LACO-4E controller must be set to "003" (Receive 7-Wire).
- The desired Comm port's Baud Rate and Parity must match that of the transmitting controller
- A properly configured modem must be connected to the desired Comm port.

LACO-4E USERS MANUAL
 Appendix H - TROUBLESHOOTING GUIDE

FIRMWARE ENVIRONMENT

Signals

Phase Calls

Source - Sometimes a phase will call unexpectedly and tracking down the source of such a call can be challenging. Phase calls can originate from any of a number of sources in LACO-4E. They generally fall into one of three categories

1. Field Initiated - A call is initiated for one or more phases associated with a field device.

- Vehicle Detector
- Ped Pushbutton
- Railroad Preemption (Track Clearance phases and/or Exit phases)
- Emergency Vehicle Preemption (EV Clearance phases)

2. Configuration Initiated - A call is initiated as a result of Phase Timing Configuration

- Minimum Vehicle Recall (location 1F3)
- Maximum Vehicle Recall (location 1F4)
- Rest In Green (location 1F5)
- Barrier Recall (location 1F7)
- Double Entry (location 1F8)
- Ped Recall (location 1E8)
- STA Mode (location 1E9)
- Associated Phase Recall (locations 1D1 through 1D8)
- Yellow Phases Called (location 1DA)
- Manual Control operation (ManCon, location 309)

3. Coordination Initiated - A call is initiated as a result of Coordination Phase Attributes. Similar to Configuration Initiated but only occurs when running plans 1-9.

- Minimum Vehicle Recall (location 7x1, where $x=$ plan number)
- Ped Recall (location 7×2, where $\mathrm{x}=$ plan number)
- Maximum Vehicle Recall (location 7×3, where $\mathrm{x}=$ plan number)
- Barrier Recall (location 7×4, where $\mathrm{x}=$ plan number)
- Green Call-To (location 7×6, where $x=$ plan number)
- STA Mode (location $7 \times 1 \mathrm{C}$, where $\mathrm{x}=$ plan number)

4. LACO-4E Logic Initiated - A call remains with no apparent source.

- Phase Maxed Out
- Programmable Logic
- Red Lock (location 1F1)
- Red and Yellow Lock (location 1F2)
- Restricted Phase Lock
- Exclusive Phase Lock
- Overlap Lock

LACO-4E offers several memory locations that give real time status of different call mechanisms.

Description	Location
Calls on detectors set for Red or Yellow lock	OAB (DetLok)
Locked calls to Restricted phases	OAC (ResLok)
Locked calls to Exclusive phases	OAD (XCLLok)
Locked calls due to termination of Overlap parent phase	OAE (OLock)
Current calls generated by Detector logic	07C (DCall)
Current Vehicle calls	O7D (VCall)
Current Ped calls	07E (PCall)

LACO-4E USERS MANUAL
 Appendix H - TROUBLESHOOTING GUIDE

Why is the Intersection in Flash?

The two categories of intersection flash and their types are:

1. Hardware (or cabinet) Flash

- A malfunction in the cabinet and/or field environments has been sensed by the CMU
- Someone has placed the cabinet in maintenance flash
- Someone has placed the cabinet in police panel flash

2. Software Flash

- Railroad Preemption
- Coordination
- BADA/BADE
- Stuck All Red
- Battery Backup System (future)

By observation of the signal heads, one can determine whether the intersection is in hardware of software flash. When the intersection is in software flash, the program sets all the even phases red and all the odd phases dark for $1 / 2$ second, and then reverses that for the next $1 / 2$ second and so on. When the intersection is in hardware flash, cabinet hardware sets two quadrants red and two quadrants dark for $1 / 2$ second, and then reverses that for the next $1 / 2$ second etc.

Observation of the CMU, the Flash/Normal switch and the Police Panel switch will provide the necessary information to diagnose a hardware flash condition.

Access FlsFlg (location OB3) and observe the call lights to determine the reason for software flash:

1. Railroad Preempt Input Active At Startup (only if Railroad operation is configured)
2. Coordination Flash
3. Railroad Flash
4. Battery Backup System Flash (future)
5. unused
6. BADA Flash (disables WatchDog output which should also trigger hardware flash)
7. BADE Flash (disables WatchDog output which should also trigger hardware flash)
8. Stuck All Red

If the intersection is in software flash because of a "Stuck All Red" condition, the Front Panel LED display also flashes ON/OFF once per second.

Conflict Monitor Flash Fault Analysis

When an intersection is put into cabinet flash by the CMU, an intensive fault isolation feature is initiated by LACO-4E. As soon as LACO-4E senses a transition of the External Stop Time input (C1-82) from False to True, it copies crucial program data to 357 bytes of contiguous memory starting at location 6 C00. This memory, in essence, captures the state of the intersection (from the program's perspective) within 1 second of the event that triggered the CMU Flash condition. The following two pages show the memory map of this data using the mnemonic names of the copied memory locations.

This memory can be retrieved from Central with repeated GetControllerTiming messages, starting at address 6C00h, until all data has been uploaded. If the Central System has the capability, this data can be used to perform detailed fault analysis of the event that caused the CMU Flash. Alternatively, a technician can exchange the CPU module in the 170E Controller and return the CPU module with the copied data to the L.A. County Signal Shop for fault analysis.

The data retrieved using this procedure could prove invaluable during accident investigation or for litigation purposes.

Trouble Shooting Buffer

	6C0	6C1	6C2	6C3	6C4	6C5	6C6	6C7	6C8	6C9	6CA	6CB	6CC	6CD	6CE	6CF	
0	ThsRng	Dynxcl	GFaze	In1	Out1	SysErr	SysFlg	RACurr	RBCurr	RAWTim	RBWTim	RAWalk	RBWalk	Delay		RRSel	0
1	OthRng	Dynrst	WFaze	In2	Out2	MeMErr	MemFlg	RANext	RBNext	RADTim	RBDTim	RADWIk	RBDWIk	Active		RR1Red	1
2	ThisSt	Barset	DWFaze	In3	Out3	MonErr	MonFlg	RALast	RBLast	RAHold	RBHold	RAMGrn	RBMGrn	EVClear		RRCIr	2
3	OthrSt	Queact	YFaze	In4	Out4	PrtErr	FlsFlg	RALead	RBLead	RAOdd	RBOdd	RAQuLm	RBQuLm	Max		RRMax	3
4	RAMain	TmpDet	RFaze	In5	Out5	CrdErr	PrtFlg	RATerm	RBTerm	RASupp	RBSupp	RAlnit	RBInit	Link		RRLnk	4
5	RBMain	LLAMsk	Fazln	In6	Out6	WWVErr	CrdFlg	RAColr	RBColr	RAExt	RBExt	RAVExt	RBVExt	EVClr		MrkTim	5
6	RASide	OlpClr	FazNxt	$\ln 7$	Out7	RstVec	ClkFlg	RAFazd	RBFazD	RATBR	RBTBR	RATBRT	RBTBRT	RRClear		MrkTmr	6
7	RBSide	DynTrm	FazLst	In8	Out8	ErrFlg	DatFlg	RAIntD	RBIntD	RAMGap	RBMGap	RACGap	RBCGap	BBSFIsh		RRMin	7
8	ThsQad	OIGFaz	OGFaze	In1L	Out9	DoorFlg	LetFlg	RALag	RBLag	RAMax	RBMax	RACMax	RBCMax	BBSRed		RRSec	8
9	XCIFlg	QHold	OYFaze	In2L	OutA	UARTXI	IntCnt	RAStop	RBStop	RAФBuf	RВФВuf	RASec	RBSec	ManCon		RRDly	9
A	RstFlg		ORFaze	In3L	Lead	"	StrtUp	RACnt	RBCntI	RAMadd	RBMadd	RACint	RBCint	OIALod	OIATmr	OADTmr	A
B	DynRRP		IRCall	In4L	CLiteo	DetLok	StrFlg	RATFIg	RBTFIg	RAGot	RBGot	RARRev	RBRRev	OIBLod	OIBTmr	OBDTmr	B
C	RXPTrm		DCall	In5L	Clite9	ResLok	PreFlg	RACall	RBCall	RAGrt	RBGrt	RARRst	RBRRst	OICLod	OICTmr	OCDTmr	C
D	Ped		VCall	In6L	CalAct	XCILok	RngFlg	RALTrm	RBLTrm	RAStep	RBStep	RAStpT	RBStpT	OIDLod	OIDTmr	ODDTmr	D
E	CalMsk	Force2	PCall	In7L	Callit	OLock	OlpFlg	RBFlag	RAFlag	RATemp	RBTemp	RAYCIr	RBYCIr	OIELod	OIETmr	OEDTmr	E
F	Allow	Advan	Call	In8L	Cntinu		QadFlg	RABrFz	RBBrFz	RALimt	RBLimt	RARCIr	RBRCIr	OIFLod	OIFTmr	OFDTmr	F
	00	01	02	03	04	05	06	07	08	09	OA	0B	0C	OD	0E	OF	

Page 6C00h RAM Map

Trouble Shooting Buffer (continued)

	6D0	6D1	6D2	6D3	6D4	6D5	6D6	6D7	6D8	6D9	6DA	6DB	6DC	6DD	6DE	6DF	
0	RRACnt	EVFlag	BBSFlag	DwnTim	RRTim	StpTim	PwrFlg										0
1	RRBCnt	EVAFaz					CoCall										1
2	EVACnt	EVBFaz	DynRRX				PedRst										2
3	EVBCnt	EVCFaz	RRCnt				Hold										3
4	EVCCnt	EVDFaz	RRStat				Force1										4
5	EVDCnt	SavVeh	RRPre	\checkmark	\checkmark	\downarrow											5
6	ManCnt		EVStat	UpTime	EVTime												6
7		EVPre	EVMax														7
8		EVAct	EntFlg														8
9		EVOIde	PreStat														9
A	OIARev	DynoiA	AGOmit														A
B	OlbRev	Dynoib	BGOmit	\downarrow	\downarrow												B
c	OICRev	Dynoic	CGOmit	DwnMin													C
D	OIDRev	Dynoid	DGOmit	DwnSec													D
E	OIERev	Dynoie	EGOmit	NovRed													E
F	OIFRev	Dynoif	FGOmit	NovRit													F
	00	01	02	03	04	05	06	07	08	09	OA	OB	OC	OD	OE	0F	

Page 6D00h RAM Map

LACO-4E USERS MANUAL Appendix H - TROUBLESHOOTING GUIDE

MISCELLANEOUS

RAILROAD INPUTS

Los Angeles County requires that railroad inputs be configured in a "fail safe" mode. This means that, when there is no train approaching, the wire pair coming from the railroad cabinet to the controller cabinet should always have 115 vac on it. The absence of 115 vac can result from normal operation of the railroad equipment or by damage to the railroad input field wires. This causes the LACO-4E program to initiate a railroad preempt sequence (assuming the intersection timing is configured for railroad preemption).

The cabinet input file normally treats the presence of voltage as a TRUE input. To accommodate the "inverted" logic of the railroad input, a special 252 AC Isolator with inverted inputs is used. This allows the input file to correctly detect a railroad input when no voltage is present and, in turn, conditions this input correctly at the 170E Controller C1 connector.

In a lab environment, typically a suitcase or other type tester is used in place of an actual controller cabinet. This means that the railroad inputs at the C1 connector in effect, behave opposite to the way they would in an intersection environment. In other words, for the LACO-4E to initiate a railroad sequence (again, assuming the intersection timing is configured for railroad preemption), the appropriate railroad input switch on the tester must be set to the OFF position. Also, to achieve normal operation (i.e. no railroad inputs active), both railroad input switches should remain in the ON position.

COMMUNICATIONS TESTING

Communications testing in a lab environment often involves a direct connection between a PC's serial port and the 170E Controller's comm port. The only thing to remember in this situation is that one use a "Null modem" to connect the two. All this really means is that the "receive pin" from one device needs to connect to the 'transmit pin" on the other device.

Figure H-1 LACO- 4E Environments

Figure H-2 Local Coordinator Plan Selection Hierarchy

Figure H-3 LACO- 4E Key Press Map
2 Head Driveway Flash 29
7 Wire 32
AB3418E $19,33,75,76,81,82,86,87$
$A C$ isolator. 18, Appendix H
actuation $15-17,24,34,35,56,57,73,101-103$
Added Green 24, 25
Added Green per Actuation 24
Added Initial Green 15, 16, 35
advance 18, 23
AND Gate See Programmable Logic
All Red Time After Flash (RR) 37
annual event 49, 72
Annual Events Table 71
Associated Phase Recall 30
AUX3 19, 54, 69, 95
Aux 3 Yellow Output Control 38
auxiliary output file 19, 54, 69, Appendix E9
barrier structure 2
Barrier Recall $26,27,48,53$
Barrier Recall Phases (coordination) 48
Base Display mode. See display modes
Base Memory Display mode See display modes
Baud (communications) 32, 33
Bus Signal Priority (BSP) $6,11,22,41,43,50,71,74,86-91,111,118,129,132,166,207,208$
BSP Mode 41
BSP Override Table 6, 43
BSP Table 11
C1 connector 15, 51, 56, 57, 95
call(s) $5,10,16,24,26-30,35,48,53,58,59,69,80,94,100,101,103,104$, Appendix H
Call (coordination function) 47
call light $.5,7,8,10,11,27,28,58,59,69,80,94,103-105$
Call Light 0 10
Call Light 9 5, 10
Carryover See Detector Extension
Chatter Threshold (system detector). See system detectors
City Code (BSP) 41
Clock Display mode See display modes
Collection Period (system detector) See system detectors
collection period timer See system detectors
Comm Port 32, 33, 79-81, 86
communications 19, 31, 32, 64, 74-86, Appendix H
Conflict Monitor Unit (CMU) 18, 19, 36, 53, 104, 107, Appendix H
coordination. $5,8,19,22,24,27,29,41,44,45,47-49,63-73,79,94,108,109$
Coordination Functions 47, 63, 70
Coordination Intervals 46
Coordination Lag Phases 48
coordination outputs 69
Coordination tables i, ii, 20, 63, 71
count $15,16,23,26,34,35,40$
Current Offset 46
cycle. $10,44-47,58,61,64,67,69,70,73,82$
Cycle Length 44-46, 70, 94
Date Display 11
Day of Week (DOW). $7,11,33,49,50,75,76$
Daylight Savings Time (DST) 31, 79
decimal data 8
defaults 55, 71, 72, 104, 108
default phase assignments 15
Delay Time (overlap) 36
Demand Phases (BSP) 42
Detailed Ring Display mode See display modes
detection $16,24,25,31,34,35,51,73,100-103$
Detector Attributes 15, 16, 34
Detector Delay 15
detector diagnostics See system detectors
detector error thresholds See system detectors
Detector Extension 15
detector inputs 15
Detector Reset 19, 104, 105
dials 66, 77, 78
Dial2. 77, 78
Dial3. 77, 78
display modes
5, 107
Base Display mode.
11
11
Base Memory Display mode
Base Memory Display mode
7, 11
7, 11
Clock Display mode..............
Detailed Ring Display mode. 5, 11
Extended Memory Display mode 9, 11, 51, 104
Table Display mode 6, 11
Double Entry 26, 27
Driveway Flash 28, 29, 94
dynamic coordination display 69
East Bound Phases (BSP). 42
emergency vehicle (EV) preemption 18, 22, 24, 36-40, 53-61, 94, 95, 100$18,33,34,62,73,82$
EV Active. 40, 59, 60
EV Clearance Phases 39
EV Clearance Time 40
EV Delay 40
EV Flags 39
EV Maximum 40
EV Minimum. $21,23-27,40,44,45,47,48,59,60,93,107$
Exception Days Table 50, 72
exception tables 6
Exclusive Or (XOR) 97
Exclusive Phases. 25-27, 93
Extended Memory Display mode See display modes
First Phases After Startup 26, 28
flag data. 8
Flash Sense 18, 82
FLASH/AUTO switch 18
FLASH/NORMAL switch 18
Flashing Don't Walk 21, 23, 24, 29, 39, 48, 59, 103, 107
Flashout utility 106, Appendix H
floating holiday 50, 72
Floating Holidays Table. 71
ForceOff1 through ForceOff8 (ZipCoord) 44
Force Offs (coordination function) 47
force off(s) $.5,23,29,40,44,48,59,60,64,66,69,70,72,74,75,85,86,87$
Free $21,24-27,37,45,55,58,61,62,65-67,69,77,78,82,93,94,105$
Free submode 67
Free Time After Preempt 37
Freeway Offramp Release Logic 103
Front Panel Stop Time 9, 11
Enable (Zip Coord) 44
Function display 10
gap out timer 16
GPS See WWV/GPS
Green Calling Phases (coordination) 48
Green Call-To Phases (coordination) 48
Green Extension Time (overlap) 36
green intervals 26, 59
Green Offset Sync 77
Green Omit 36, 53
Green Rest 25
Green Rest Delay 25, 26
Hardwired ETA (BSP) 41
Holds (coordination function) 47
Hold Release (Zip Coord) 44, 73
I/O 15, 51, Appendix E
initial power up 21
input file 19
input(s). 15, 17, 18, 28, 37, 40, 54, 55, 57, 61, 95-97, 102, Appendix E, Appendix H
interconnect. 19, 66, 67
intervals $16,21-30,34,35,37-39,46-48,51,53,59,60,62,70,73,106$
Intervals (coordination) 46
Key Press Map. 11
LACO-1R 11, Appendix D1
LACO-3 11, 22, 66, Appendix D2
lag phases 26, 27, 48, 62
Lag Phases (coordination) 48
Lag Phases (free) 27
Lag Phases (manual control) 33
Last Local Cycle 46
Last Master Cycle 46
Logic Latch See Programmable Logic
LED Display $7,8,19,104$
limited service See railroad, limited service
Limited Service Phases (RR) 38
Limited Service Time (RR) 37
Link to EV 40
load switch 19, 22, 28, 36, 53, 94, 106
Local Coordination Map 68, 203, 218, Appendix H
Local Coordinator $10,45,63,64,66,67,69,71,72$
Local Cycle Timer $8,11,45,46$
Local Manual 10, 21, 44, 45, 67, 107
Local Plan 46, 69
logic devices See Programmable Logic
logic examples See Programmable Logic
logic gates See Programmable Logic
Logic Timer See Programmable Logic
Main Street Phases 21, 25, 27, 28, 31, 93, 107
Manual Advance 62
Manual Control $17,18,19,22,27,28,33,34,38,54,58,61,62,82,93$
Manual Control Advance 18
Manual Control Enable 18, 62
Manual Override 66, 67, 77, 78
Manual Plan submode 66
Master 45, 64, 65, 66, 67, 73, 77
Master Coordinator 46, 64, 65
Master Cycle Timer 46
Master Plan 46
Max Added Green 24, 25
Max Green 1 24, 25
Max Green 2 24, 25
Max I 48
Maximum Cycle Length. $21,44,45,107$
Maximum Vehicle Recall 26, 27, 48
Maximum Vehicle Recall Phases (coordination) 48
Memory Display 51, 104
memory management 108
memory map 3
Mid-Block Ped Crossing 31, 103
Midnight Sync Pulse 44
Minimum Cycle Length 44, 45
Minimum Gap 24, 25
Minimum Green 21, 23, 24, 59, 93, 107
Minimum Vehicle Recall 21, 26, 27, 48
Minimum Recall Phases (coordination) 48
minimums 23, 26, 70, 107
Miscellaneous Timers 25
New Offset 46
Non-Counting 16, 35
North Bound Phases (BSP) 42
occupancy 17
Offset 78 $0,30,31,45,64,66,67,77,78$
$10,44,45,64,66,67,77,78$
Offset Timing
Offset Timing submode 67
Omit Phases (manual control) 33
Omitted Phases (coordination) 48
opposing call 29, 47, 48
Opticom 18
OR Gate See Programmable Logic
output file 15
output file editing 104
output(s) $15,18,19,28,53,55,56,58,61,62,66,71,94-97,104,106,107$, Appendix H
19, 36
19, 36
Overlap Parent Phases 36
overlaps $19,25,28,30,31,36,53,56,58,93,94,105,108$
2-color 19, 53, 69, 106
3-color 19, 53, 94
Parity (communications) 32, 33
ped $17,27-31,36,38,47,48,53-56,62,93,94,103,106$
Ped 2 17, 19
Ped 4 17, 19
Ped 6 17, 19
Ped 8 17, 19
Ped A 17, 18, 28, 62, 69, 93
Ped B 17, 18, 28, 62
ped call 17
ped pushbutton (PPB) 17
Ped Recall $21,28,29,31,48,93$
Ped Recycle 31
Ped Restricts (coordination function) 47, 59, 60, 66, 70
Pedestrian Recall Phases 48
peer-to-peer communication 75
Permitted Phases $21,23,26,34,39,47,94,107$
phase and interval digits 7
phase assignments 34, 53
Phase Diagram 23, 25
Phase Timing 23
Phases to Omit System Detectors (coordination) 48
Phases to Use Max 1 (coordination) 48
police panel 18
Port Mode (communications) 32, 33
preemption $18,22-24,36-40,53-61,82,102,108$
Preemption Indicator 19
preemption sequence 55, 58, 61, 102
Primary Address (BSP) 41
Priority Phases (BSP) 42
Programmable Logic 19, 22, 51, 95-102
AND Gate 96
Logic Latch 51, 97
logic devices 96
logic examples 100
logic gates 51
Logic Timer 51, 99
OR Gate 96
Logic Relay 51, 95, 98, 102
set/reset latch 97
XOR (Exclusive Or) Gate 97
Protected/Permissive Left Turn 10, 26, 27, 102
protocol $19,64,75,76,78,81,82,86$
Queue Clearing 16, 35
Queue Hold 5, 16
Queue Maximum 24
railroad (RR) preemption 10, 18, 22-24, 36-39, 53-61, 93, 94, 102, Appendix H
flashing red operation37, 55
limited service operation 36-38, 53, 55-58, 61, 93,94
track clearance operation $6,31,37,38,53,55,56,58,94$
Railroad Exit Phases 38, 56
Railroad Link to EV 37
Railroad Ped Only Phases 38
Railroad Select 37
Railroad Track Clearance Phases 38, 55
real time clock 7, 22, 77, 79
recall 29, 33, 34, 47, 48
Recall Type (manual control) 33
Receive Time and Date 74, 76
Red and Yellow Lock 16, 26, 27, 34
Red Clearance $21,24-26,36,53,56,72,103$
Red Clearance Time (overlap) 36
Red Lock 16, 26, 27
Red Rest 25-27, 48
Red Rest Delay Time 26
Red Rest Phases (coordination) 48
Red Revert 21, 25, 72, 93, 107
Red Revert Time 26
reinitialization 107
Logic Relay See Programmable Logic
Rest in Green 26, 27
Restricted Phases 25-27, 93
RR A See Railroad A
RR B See Railroad B
RR Flash 37, 55
RS232 64, 75
Secondary Address (BSP) 41
Semi-Traffic Actuated (STA) Mode 28, 29, 31, 48, 93
set/reset latch See Programmable Logic
21, 28, 93, 107Side Street Phases
signal heads 19, 106, Appendix H
slave 45, 64, 66, 67
Slave submode 66, 77, 78
South Bound Phases (BSP) 42
Special Delay Option 16, 35
Special Function Output. 19, 46, 69, 71
STA. See Semi Traffic Actuated (STA) Mode
STA Mode See Semi Traffic Actuated (STA) Mode
STA Mode Phases (coordination) 48
stop bar extension 16
Stop Time 100, 104, 106, 107
Stop Time External 18
Stop Time switch 104, 106
stuck all red $25,26,107$
Stuck OFF Threshold .See system detectors
Stuck ON Threshold See system detectors
Stuck All Red Fail Delay Time 26
syncsystem detectors16, 17
Chatter Threshold 16
Collection Period 17
collection period timer. 17
detector diagnostics. 16
detector error thresholds 16
Stuck OFF Threshold 16
Stuck ON Threshold 16
System ID 81
System Manual 21, 44, 45, 107
Table Display mode See display modes
tables $6,19,22,49,50,66,69,71,108$
TBR.See Time Before Reduction
Time and Date $7,33,74,75,76,77$
Time Before Reduction 24
Time Display 11
Time of Day. $6,19,22,45,49,50,66,67,71$
Time of Day Plan 46
Time of Day Tables See TOD Tables
Time to Reduce 24, 25
timing copying 109
timing sheets $22,23,27,34,38,51,73,96,108$
TOD Tables 19, 66, 67, 69, 71, 72
TMC Override 46, 66, 67
track clearance. See railroad, track clearanceTransmit 7-Wire$.74,77$
Transmit Plan 74, 78
Transmit Time and Date 74, 75
Trip Point (BSP) 41
Trouble Shooting Guide Appendix H
user data validation 93
User Flags 30, 31, 103
vehicle call 15
Vehicle Extension 5, 24, 25, 27, 48
volume 17
Walk $21,23,24,29,39,48,56,59,72,103,105,106,107$
watchdog 19, 104, 107
West Bound Phases (BSP) 42
WWV/GPS $11,32,75,76,79,80$
Yellow Calling Phase 30
Yellow Clearance $21,23,24,25,28,31,36,72,93,94,103,107$
Yellow Clearance Time (overlap) 36
Yellow Disconnect 16, 35
yellow interval $16,27,34,35$
Yellow Offset Sync 77
Yellow Phase Called 30
Yellow Ranging $25,30,31,36,93,94,103$
Yellow Startup Phases 28
Yellow Start-Up Overlaps 26
Yellow Start-Up Phases 26
yield coordination 67
ZIP coordination 44, 73

[^0]: ${ }^{1}$ Caltrans AB3418E
 ${ }^{2}$ Caltrans AB3418E
 ${ }^{3}$ L.A. County Specific

